A Brain-Friendly Guide

Head First

Think like a physicist

Try experiments, and solve dozens of puzzles and exercises

Heather Lang, Ph.D.

Head First Physics

What will you learn from this book?

Are you struggling to pass the AP Physics B exam? Is your college physics class giving you a headache? Do you wish you understood how the world around you really worked? Then check out Head First Physics, a complete guide to algebra-based mechanics and practical physics.

Physics is all about the world we live in, encompassing everything from conservation of energy to orbital behavior. You'll master scientific notation, SI units, vectors, Newton's laws, and circular and simple harmonic motion.

Why does this book look so different?

We think your time is too valuable to spend struggling with new concepts. Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Physics uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.

US \$29.99

CAN \$29.99
ISBN: 978-0-596-10237-1

Free online edition for 45 days with purchase of this book. Details on last page.
Download at WoweBook.Com
"It can be difficult to break students of the habit of memorizing, but the Head First approach encourages a deeper understanding of the material and gives students the tools they need to break down complex problems into simpler ones. Definitely a help in solving AP Exam problems."

Diane Jaquith,
High School Physics Teacher
"This is a truly remarkable book. The physics is taught clearly and without too much mathematics by looking at a series of wellchosen real-life or comedy tasks. If math really doesn't turn you on, this is a great way to learn Physics! I didn't think it was possible to do some of this stuff without calculus, but Head First Physics has done it."

John Allister, M.S. [Cambridge University]

O'REILLY*

www.oreilly.com www.headfirstlabs.com

Advance Praise for Head First Physics

"If you want to learn some physics, but you think it's too difficult, buy this book! It will probably help, and if it doesn't, you can always use it as a doorstop or hamster bedding or something. I wish I had a copy of this book when I was teaching physics."

- John Allister, physics teacher

"Head First Physics has achieved the impossible - a serious textbook that makes physics fun. Students all over will be thinking like a physicist!"

- Georgia Gale Grant, freelance science writer, communicator and broadcaster
"Great graphics, clear explanations and some crazy real world problems to solve! This text is full of strategies and tips to attack problems. It encourages a team approach that's so essential in today's work world."
-Diane Jaquith, high school physics, chemistry and physical science teacher
"This is an outstandingly good teacher masquerading as a physics book! You never feel phased if you don't quite understand something the first time because you know it will be explained again in a different way and then repeated and reinforced. "

- Marion Lang, teacher

"This book takes you by the hand and guides you through the world of physics."

- Catriona Lang, teacher

"Head First Physics really rocks - I never thought it was possible to enjoy learning physics so much! This book is about understanding and not about rote learning, so you can get to grips with the physics and remember it much better as a result."

- Alice Pitt-Pitts

Praise for other Head First academic titles

"Head First Statistics is by far the most entertaining, attention-catching study guide on the market. By presenting the material in an engaging manner, it provides students with a comfortable way to learn an otherwise cumbersome subject. The explanation of the topics is presented in a manner comprehensible to students of all levels."

- Ariana Anderson, Teaching Fellow/PhD candidate in Statistics, UCLA

"Head First is an intuitive way to understand statistics using simple, real-life examples that make learning fun and natural."

- Michael Prerau, computational neuroscientist and statistics instructor, Boston University

"Thought Head First was just for computer nerds? Try the brain-friendly way with statistics and you'll change your mind. It really works."

- Andy Parker

"This book is a great way for students to learn statistics - it is entertaining, comprehensive, and easy to understand. A perfect solution!"

- Danielle Levitt

"Down with dull statistics books! Even my cat liked this one."

- Cary Collett

Praise for the Head First Approach

"There are books you buy, books you keep, books you keep on your desk, and thanks to O'Reilly and the Head First crew, there is the ultimate category, Head First books. They're the ones that are dog-eared, mangled, and carried everywhere. Head First SQL is at the top of my stack. Heck, even the PDF I have for review is tattered and torn."

\author{

- Bill Sawyer, ATG Curriculum Manager, Oracle
}
"Elegant design is at the core of every chapter here, each concept conveyed with equal doses of pragmatism and wit."
- Ken Goldstein, Executive Vice President, Disney Online
"I feel like a thousand pounds of books have just been lifted off of my head."
-Ward Cunningham, inventor of the Wiki and founder of the Hillside Group
"This book's admirable clarity, humor and substantial doses of clever make it the sort of book that helps even non-programmers think well about problem-solving."

\author{

- Cory Doctorow, co-editor of Boing Boing Author, Down and Out in the Magic Kingdom and Someone Comes to Tozn, Someone Leaves Town
}
"It's fast, irreverent, fun, and engaging. Be careful-you might actually learn something!"

> -Ken Arnold, former Senior Engineer at Sun Microsystems Co-author (with James Gosling, creator of Java), The Java Programming Language
"I received the book yesterday and started to read it....and I couldn't stop. This is definitely très 'cool.' It is fun, but they cover a lot of ground and they are right to the point. I'm really impressed."

— Erich Gamma, IBM Distinguished Engineer, and co-author of Design Patterns

"One of the funniest and smartest books on software design I've ever read."
—Aaron LaBerge, VP Technology, ESPN.com

[^0]- Sally Applin, UI Designer and Artist

Other related books from O'Reilly

Statistics Hacks ${ }^{\text {TM }}$

Statistics in a Nutshell
Mind Hacks ${ }^{\text {TM }}$
Mind Performance Hacks ${ }^{\text {TM }}$
Your Brain: The Missing Manual

Other books in O'Reilly's Head First series

Head First Java ${ }^{\text {TM }}$
Head First Object-Oriented Analysis and Design (OOA\&D)
Head First HTML with CSS and XHTML
Head First Design Patterns
Head First Servlets and JSP
Head First EJB
Head First PMP
Head First SQL
Head First Software Development
Head First JavaScript
Head First Ajax
Head First Statistics
Head First PHP \& MySQL (2008)
Head First Algebra (2008)
Head First Rails (2008)
Head First Web Design (2008)

Head First Physics
 A learner's companion to mechanics and practical physics

Heather Lang, Ph.D.

Head First Physics

by Heather Lang, Ph.D.

Copyright © 2009 O’Reilly Media, Inc. All rights reserved.
Printed in the United States of America.
Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.
O'Reilly Media books may be purchased for educational, business, or sales promotional use. Online editions are also available for most titles (safari.oreilly.com). For more information, contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Series Creators:
Kathy Sierra, Bert Bates
Series Editor:
Design Editor:
Brett D. McLaughlin
Louise Barr
Cover Designers:
Production Editor:
Louise Barr, Steve Fehler
Brittany Smith
Indexer:
Julie Hawks

Printing History:

September 2008: First Edition.

The O'Reilly logo is a registered trademark of O'Reilly Media, Inc. The Head First series designations, Head First Physics, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc., was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and the authors assume no responsibility for errors or omissions, or for damages resulting from the use of the information contained herein.

No pizza delivery guys were harmed in the making of this book.

ISBN: 978-0-596-10237-1
[M]

This book is dedicated to... anyone who made me laugh while writing it!

Author of Head First Physics

Heather studied physics in Manchester, gaining a first class honours degree. She likes explaining how stuff works and persuading people to send her chocolate in the post. Her first foray into science communication was via the BaBar Particle Physics Teaching Package. She followed this up with a Ph.D. in the grey area between physics and biochemistry, but got fed up of sharing a fridge with petri dishes and moved on from the lab into education and Head First Physics.

When not explaining how stuff works, Heather likes to play extreme sports such as chess and cricket, play with sliders on a sound desk, or play the fool while running school chess clubs (in the name of teaching of course).

Table of Contents (Summary)

Intro xxxiii
1 Think Like a Physicist: In the beginning 1
2 Making It All Mean Something: Units and Measurements 17
3 Scientific Notation, Area, and Volume: All Numbers Great and Small 55
4 Equations and Graphs: Learning the Lingo 95
5 Dealing with Directions: Vectors 149
Experiments 193
6 Displacement, Velocity, and Acceleration: What's Going On? 203
7 Equations of Motion (Part 1): Playing with Equations 237
8 Equations of Motion (Part 2): Up, Up, and... Back Down 283
9 Triangles, Trig and Trajectories: Going Two-Dimensional 335
10 Momentum Conservation: What Newton Did 391
11 Weight and The Normal Force: Forces for Courses 437
12 Using Forces, Momentum, Friction and Impulse: Getting On With It 471
13 Torque and Work: Getting a Lift 515
14 Energy Conservation: Making Your Life Easier 559
15 Tension, Pulleys and Problem Solving: Changing Direction 603
16 Circular Motion (Part 1) From α to ω 631
17 Circular Motion (Part 2): Staying on Track 663
18 Gravitation and Orbits: Getting Away From It All 715
19 Oscillations (Part 1): Round and Round 761
20 Oscillations (Part 2): Springs 'n’ Swings 797
21 Think Like a Physicist: It's the Final Chapter 839
i Appendix i: Top Six Things We Didn't Cover 863
ii Appendix ii: Equation Table 873

Table of Contents (the peal thing)

Intro

Your brain on Physics. Here you are trying to learn something, while here your brain is doing you a favor by making sure the learning doesn't stick. Your brain's thinking,"Better leave room for more important things, like which wild animals to avoid and whether naked snowboarding is a bad idea." So how do you trick your brain into thinking that your life depends on knowing physics?
Who is this book for? xxxiv
We know what you're thinking xxxv
Metacognition xxxvii
Bend your brain into submission xxxix
Read me xl
The technical review team xlii
Acknowledgments xliii

think like a physicist

In the beginning

Physics is about the world around you and how everything in it works. As you go about your daily life, you're doing physics all the time! But the thought of actually learning physics may sometimes feel like falling into a bottomless pit with no escape! Don't worry... this chapter introduces how to think like a physicist. You'll learn to step into problems and to use your intuition to spot patterns and 'special points' that make things much easier. By being part of the problem, you're one step closer to getting to the solution...
Physics is the world around you 2
You can get a feel for what's happening by being a part of it 4
Use your intuition to look for 'special points' 6
The center of the earth is a special point 8
Ask yourself "What am I ALREADY doing as I reach the special point?" 9
Where you're at - and what happens next? 11
Now put it all together 13

making it all MEAN something

2

Units and measurements

How long is a piece of string? Physics is based on making measurements that tell you about size. In this chapter, you'll learn how to use units and rounding to avoid making mistakes - and also why errors are OK. By the time you're through, you'll know when something is significant and have an opinion on whether size really is everything.

It's the best music player ever, and you're part of the team! 18
So you get on with measuring the myPod case 19
When the myPod case comes back from the factory, it's way too big 20
There aren't any UNITS on the blueprint 22
You'll use SI units in this book (and in your class) 25
You use conversion factors to change units 29
You can write a conversion factor as a fraction 30
Now you can use the conversion factor to update the blueprint 33
What to do with numbers that have waaaay too many digits to be usable 36
How many digits of your measurements look significant? 37
Generally, you should round your answers to three significant digits 39
You ALREADY intuitively rounded your original myPod measurements! 42
Any measurement you make has an error (or uncertainty) associated with it 43
The error on your original measurements should propagate through to your converted blueprint 44
STOP!! Before you hit send, do your answers SUCK?! 47
When you write down a measurement, you need the right number of significant digits 51
Hero or Zero? 52

Time

scientific notation, area, and volume

All numbers great and small

In the real world, you have to deal with all kinds of numbers, not just the ones that are easier to work with. In this chapter, you'll be taking control of unwieldy numbers using scientific notation and discovering why rounding a large number doesn't mean having to write a zillion zeros at the end. You'll also use your new superpowers to deal with units of area and volume - which is where scientific notation will save you lots of grief (and time) in the future!

equations and graphs

Learning the lingo

4

 Communication is vital. You're already off to a good start in your journey to truly think like a physicist, but now you need to communicate your thoughts. In this chapter, you're going to take your first steps in two universal languages - graphs and equations - pictures you can use to speak a thousand words about experiments you do and the physics concepts you're learning. Seeing is believing.
dealing with directions

5

Vectors

Time, speed, and distance are all well and good, but you really need DIRECTION too if you want to get on in life.

You now have multiple physics superpowers: You've mastered graphs and equations, and you can estimate how big your answer will be. But size isn't everything. In this chapter, you'll be learning about vectors, which give direction to your answers and help you to find easier shortcuts through complicated-looking problems.

The treasure hunt 150
Displacement is different from distance 155
Distance is a scalar; displacement is a vector 157
You can represent vectors using arrows 157
You can add vectors in any order 162
The "Wheat from the chaff" Question 166
Angles measure rotations 168
If you can't deal with something big, break it down into smaller parts 170
Velocity is the 'vector version' of speed 174
Write units using shorthand 175
You need to allow for the stream's velocity too! 176
If you can find the stream's velocity, you can figure out the velocity for the boat 177
It takes the boat time to accelerate from a standing start 180
How do you deal with acceleration? 181
Vector, Angle, Velocity, Acceleration = WINNER!!! 187

Displacement, Velocity, and Acceleration What's going on?

6

It's hard to keep track of more than one thing at a time.

When something falls, its displacement, velocity, and acceleration are all important at the same time. So how can you pay attention to all three without missing anything? In this chapter, you'll increase your experiment, graph, and slope superpowers in preparation for bringing everything together with an equation or two.
Just another day in the desert 204
How can you use what you know? 207
The cage accelerates as it falls 210
'Vectorize' your equation 211
You want an instantaneous velocity, not an average velocity 213
You already know how to calculate the slope of a straight line... 218
A point on a curved line has the same slope as its tangent 218
The slope of something's velocity-time graph lets you work out its acceleration 226
Work out the units of acceleration 227
Success! You worked out the velocity after 2.0 s - and the cage won't break! 231
Now onto solve for the displacement! 234

Equations of motion (part 1)

7

Playing With Equations

It's time to take things to another level.

So far, you've done experiments, drawn graphs of their results, and worked out equations from them. But there's only so far you can go since sometimes your graph isn't a straight line. In this chapter, you'll expand your math skills by making substitutions to work out a key equation of motion for a curved displacement-time graph of a falling object. And you'll also learn that checking your GUT reaction to an answer can be a good thing.

How high should the crane be? 238
Graphs and equations both represent the real world 240
You're interested in the start and end points 241
You have an equation for the velocity - but what about the displacement? 244
See the average velocity on your velocity-time graph 249
Test your equations by imagining them with different numbers 251
Calculate the cage's displacement! 253
You know how high the crane should be! 254
But now the Dingo needs something more general 255
A substitution will help 256
Get rid of the variables you don't want by making substitutions 259
Continue making substitutions 261
You derived a useful equation for the cage's displacement! 264
Check your equation using Units 265
Check your equation by trying out some extreme values 268
Your equation checks out! 273
So the Dingo drops the cage 274
The "Substitution" Question 275
The "Units" or "Dimensional analysis" Question 276

equations of motion (part 2)

8

Up, up, and... back down

What goes up must come down. You already know how to deal with things that are falling down, which is great. But what about the other half of the bargain - when something's launched up into the air? In this chapter, you'll add a third key equation of motion to your armory which will enable you to deal with (just about) anything! You'll also learn how looking for a little symmetry can turn impossible tasks into manageable ones.

Now ACME has an amazing new cage launcher 284
The acceleration due to gravity is constant 286
Velocity and acceleration are in opposite directions, so they have opposite signs 288
You can use one graph to work out the shapes of the others 293
Is a graph of your equation the same shape as the graph you sketched? 298
Fortunately, ACME has a rocket-powered hovercraft! 305
You can work out a new equation by making a substitution for t 308
Multiply out the parentheses in your equation 311
You have two sets of parentheses multiplied together 312
You need to simplify your equation by grouping the terms 315
You can use your new equation to work out the stopping distance 317
There are THREE key equations you can use when there's constant acceleration 318
You need to work out the launch velocity that gets the Dingo out of the Grand Canyon! 321
You need to find another way of doing this problem 326
The start of a beautiful friendship 330
The "Sketch a graph" or "Match a graph" Question 331
The "Symmetry" and "Special points" Questions 332

triangles, trig and trajectories

Going two-dimensional

So you can deal with one dimension. But what about real life?

Real things don't just go up or down - they go sideways too! But never fear - you're about to gain a whole new bunch of trigonometry superpowers that'll see you spotting right-angled triangles wherever you go and using them to reduce complicated-looking problems into simpler ones that you can already do.

xviii
Camelot - we have a problem! 336
How wide should you make the moat? 339
Looks like a triangle, yeah? 340
A scale drawing can solve problems 342
Pythagoras' Theorem lets you figure out the sides quickly 343
Sketch + shape + equation = Problem solved! 345
Camelot ... we have ANOTHER problem! 348
Relate your angle to an angle inside the triangle 351
Classify similar triangles by the ratios of their side lengths 354
Sine, cosine and tangent connect the sides and angles of a right-angled triangle 355
How to remember which ratio is which? 357
Sine Exposed 358
Calculators have $\sin (\theta), \cos (\theta)$ and $\tan (\theta)$ tables built in 360
Uh oh. Gravity... 367
The cannonball's velocity and acceleration vectors point in different directions 369
Gravity accelerates everything downwards at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ 370
The horizontal component of the velocity can't change once you've let go 371
The horizontal component of a projectile's velocity is constant 372
The same method solves both problems 375
The "Projectile" Question 376
The "Missing steps" Question 387

[^1]
momentum conservation

10

What Newton Did

No one likes to be a pushover. So far, you've learned to deal with objects that are already moving. But what makes them go in the first place? You know that something will move if you push it - but how will it move? In this chapter, you'll overcome inertia as you get acquainted with some of Newton's Laws. You'll also learn about momentum, why it's conserved, and how you can use it to solve problems.

$$
\text { The pirates be havin' a spot o' bother with a ghost ship ... } 392
$$

What does the maximum range depend on? 395
Firing at 45° maximizes your range 396
You can't do everything that's theoretically possible - you need to be practical too 397
Sieges-R-Us has a new stone cannonball, which they claim will increase the range! 400
Massive things are more difficult to start and stop 402
Newton's First Law 403
Mass matters 404
A stone cannonball has a smaller mass - so it has a larger velocity. But how much larger? 407
Here's your lab equipment 410
How are force, mass and velocity related? 411
Vary only one thing at a time in your experiment 414
Mass \times velocity - momentum - is conserved 418
A greater force acting over the same amount of time gives a greater change in momentum 420
Write momentum conservation as an equation 421
Momentum conservation and Newton's Third Law are equivalent 422
You've calculated the stone cannonball's velocity, but you want the new range! 429
Use proportion to work out the new range 430
The "Proportion" Question (often multiple choice) 434

weight and the normal force

Forces for courses

Sometimes you have to make a statement forcefully.

In this chapter, you'll work out Newton's 2nd Law from what you already know about momentum conservation to wind up with the key equation, $\mathbf{F}_{\text {net }}=m a$. Once you combine this with spotting Newton's 3rd Law force pairs, and drawing free body diagrams, you'll be able to deal with (just about) anything. You'll also learn about why mass and weight aren't the same thing, and get used to using the normal force to support your arguments.

WeightBotchers are at it again! 438
Is it really possible to lose weight instantly?! 439
Scales work by compressing or stretching a spring 440
Mass is a measurement of "stuff" 442
Weight is a force 442
The relationship between force and mass involves momentum 444
If the object's mass is constant, Fnet $=$ ma 446
The scales measure the support force 449
Now you can debunk the machine! 451
The machine reduces the support force 452
Force pairs help you check your work 454
You debunked WeightBotchers! 456
A surface can only exert a force perpendicular (or normal) to it 458
When you slide downhill, there's zero perpendicular acceleration 461
Use parallel and perpendicular force components to deal with a slope 463
The "Free body diagram" Question 466
The "Thing on a slope" Question 467

using forces, momentum, friction and impulse

12

Getting on with it

It's no good memorizing lots of theory if you can't apply it.

You already know about equations of motion, component vectors, momentum conservation, free body diagrams and Newton's Laws. In this chapter, you'll learn how to fit all of these things together and apply them to solve a much wider range of physics problems. Often, you'll spot when a problem is like something you've seen before. You'll also add more realism by learning to deal with friction - and will see why it's sometimes appropriate to act on impulse.
It's ... SimFootball! 472
Momentum is conserved in a collision 476
But the collision might be at an angle 477
A triangle with no right angles is awkward 479
Use component vectors to create some right-angled triangles 480
The programmer includes 2D momentum conservation 483
In real life, the force of friction is present 484
Friction depends on the types of surfaces that are interacting 488
Be careful when you calculate the normal force 489
You're ready to use friction in the game! 491
Including friction stops the players from sliding forever! 492
The sliding players are fine - but the tire drag is causing problems 493
Using components for the tire drag works! 497
Friction Exposed 498
The "Friction" Question 499
How does kicking a football work? 500
$\mathrm{F} \Delta \mathrm{t}$ is called impulse 502
The game's great - but there's just been a spec change! 506
For added realism, sometimes the players should slip 509
You can change only direction horizontally on a flat surface because of friction 510
The game is brilliant, and going to X -Force rocks! 511
Newton's Laws give you awesome powers 512

torque and work

13

Getting a lift

You can use your physics knowledge to do superhuman feats.

In this chapter, you'll learn how to harness torque to perform amazing displays of strength, by using a lever to exert a much larger force than you could on your own. However, you can't get something for nothing - energy is always conserved and the amount of work you do to give something gravitational potential energy by lifting it doesn't change.

Half the kingdom to anyone who can lift the sword in the stone 516
Can physics help you to lift a heavy object? 517
Use a lever to turn a small force into a larger force 519
Do an experiment to determine where to position the fulcrum 521
Zero net torque causes the lever to balance 525
Use torque to lift the sword and the stone! 530
The "Two equations, two unknowns" Question 533
So you lift the sword and stone with the lever ... but they don't go high enough! 535
You can't get something for nothing 537
When you move an object against a force, you're doing work 538
The work you need to do a job $=$ force \times displacement 538
Which method involves the least amount of work? 539
Work has units of Joules 541
Energy is the capacity that something has to do work 542
Lifting stones is like transferring energy from one store to another 542
Energy conservation helps you to solve problems with differences in height 545
Will energy conservation save the day? 547
You need to do work against friction as well as against gravity 549
Doing work against friction increases internal energy 551
Heating increases internal energy 552
It's impossible to be 100% efficient 553

energy conservation

14

Making your life easier

Why do things the hard way when there's an easier way?

So far, you've been solving problems using equations of motion, forces and component vectors. And that's great - except that it sometimes takes a while to crunch through the math. In this chapter, you'll learn to spot where you can use energy conservation as a shortcut that lets you solve complicated-looking problems with relative ease.

The ultimate bobsled experience 560
Forces and component vectors solve the first part... but the second part doesn't have a uniform slope 563
A moving object has kinetic energy 565
The kinetic energy is related to the velocity 567
Calculate the velocity using energy conservation and the change in height 569
You've used energy conservation to solve the second part 571
In the third part, you have to apply a force to stop a moving object 571
Putting on the brake does work on the track 573
Doing work against friction increases the internal energy 574
Energy conservation helps you to do complicated problems in a simpler way 579
There's a practical difference between momentum and kinetic energy 581
The "Show that" Question 584
The "Energy transfer" Question 585
Momentum conservation will solve an inelastic collision problem 587
You need a second equation for an elastic collision 587
Energy conservation gives you the second equation that you need! 589
Factoring involves putting in parentheses 591
You can deal with elastic collisions now 592
In an elastic collision, the relative velocity reverses 593
There's a gravity-defying trick shot to sort out 594
The initial collision is inelastic - so mechanical energy isn't conserved 596
Use momentum conservation for the inelastic part 597
The "Ballistic pendulum" Question 599
tension, pulleys and problem solving

15

Changing direction

Sometimes you need to deal with the tension in a situation

So far, you've been using forces, free body diagrams and energy conservation to solve problems. In this chapter you'll take that further as you deal with ropes, pulleys, and yes, tension. Along the way, you'll also practise looking for familiar signposts to help navigate your way through complicated situations.
It's a bird... it's plane...no, it's a guy on a skateboard?! 604
Always look for something familiar 605
Michael and the stack accelerate at the same rate 608
Use tension to tackle the problem 611
Look at the big picture as well as the parts 617
But the day before the competition 619
Using energy conservation is simpler than using forces 621
There goes that skateboard... 626

xxiv

circular motion (part 1)

16

From $\boldsymbol{\alpha}$ to $\boldsymbol{\omega}$

You say you want a revolution? In this chapter, you'll learn how to deal with circular motion with a crash course in circle anatomy, including what the radius and circumference have to do with pies (or should that be πs). After dealing with frequency and period, you'll need to switch from the linear to the angular. But once you've learned to use radians to measure angles, you'll know it's gonna be alright.

Limber up for the Kentucky Hamster Derby 632
You can revolutionize the hamsters' training 633
Thinking through different approaches helps 635
A circle's radius and circumference are linked by π 637
Convert from linear distance to revolutions 639
Convert the linear speeds into Hertz 641
So you set up the machine ... but the wheel turns too slowly! 643
Try some numbers to work out how things relate to each other 645
The units on the motor are radians per second 646
Convert frequency to angular frequency 651
The hamster trainer is complete! 652
You can increase the (linear) speed by increasing the wheel's radius 657
The "Angular quantities" Question 660

circular motion (part 2)

17

Staying on track

Ever feel like someone's gone off at a tangent? That's exactly what happens when you try to move an object along a circular path when there's not enough centripetal force to enable this to happen. In this chapter, you'll learn exactly what centripetal force is and how it can keep you on track. Along the way, you'll even solve some pretty serious problems with a certain Head First space station. So what are you waiting for? Turn the page, and let's get started.

Houston ... we have a problem 664
When you're in freefall, objects appear to float beside you 666
What's the astronaut missing, compared to when he's on Earth? 667
Can you mimic the contact force you feel on Earth? 669
Accelerating the space station allows you to experience a contact force 671
You can only go in a circle because of a centripetal force 674
Centripetal force acts towards the center of the circle 677
The astronaut experiences a contact force when you rotate the space station 678
What affects the size of centripetal force? 679
Spot the equation for the centripetal acceleration 681
Give the astronauts a centripetal force 683
The floor space is the area of a cylinder's curved surface 686
Let's test the space station... 689
The "Centripetal force" Question 692
The bobsled needs to turn a corner 694
Angling the track gives the normal force a horizontal component 697
When you slide downhill, there's no perpendicular acceleration 698
When you turn a corner, there's no vertical acceleration 699
How to deal with an object on a slope 700
The "support force" required for a vertical circle varies 704
Any force that acts towards the center of the circle can provide a centripetal force 707
The "Banked curve" Question 711
The "Vertical circle" Question 712

gravitation and orbits

18

Getting away from it all

So far, you've been up close and personal with gravity - but what

 happens to the attraction as your feet leave the ground? In this chapter, you'll learn that gravitation is an inverse square law, and harness the power of gravitational potential to take a trip to infinity... and beyond. Closer to home, you'll learn how to deal with orbits - and learn how they can revolutionize your communication skills.
Party planners, a big event, and lots of cheese 716
What length should the cocktail sticks be? 717
The cheese globe is a sphere 719
The surface area of the sphere is the same as the surface area of the cheese 720
Let there be cheese.. 723
The party's on! 725
To infinity - and beyond! 726
Earth's gravitational force on you becomes weaker as you go further away 729
Gravitation is an inverse square law 735
Now you can calculate the force on the spaceship at any distance from the Earth 741
The potential energy is the area under the force-displacement graph 743
If $\mathrm{U}=0$ at infinity, the equation works for any star or planet 745
Potential Energy Exposed 746
Use energy conservation to calculate the astronaut's escape velocity 747
We need to keep up with our astronaut 751
The centripetal force is provided by gravity 754
With the comms satellites in place, it's Pluto (and beyond) 757
The "gravitational force $=$ centripetal force" Question 758

Oscillations (part 1)

19

Round and round

Things can look very different when you see them from

another angle. So far you've been looking at circular motion from above - but what does it look like from the side? In this chapter, you'll tie together your circular motion and trigonometry superpowers as you learn extended definitions of sine and cosine. Once you're done, you'll be able to deal with anything that's moving around a circle - whichever way you look at it.

xxviii

Oscillations (part 2)

Springs ' \mathbf{n} ' swings
 What do you do when something just happens over and over? This chapter is about dealing with oscillations, and helps you see the big picture. You'll put together what you know about graphs, equations, forces, energy conservation and periodic motion as you tackle springs and pendulums that move with simple harmonic motion to get the ultimate "I rule" experience ... without having to repeat yourself too much.

Get rocking, not talking 798
The plant rocker needs to work for three different masses of plant 798
A spring will produce regular oscillations 799
Displacement from equilibrium and strength of spring affect the force 801
A mass on a spring moves like a side-on view of circular motion 805
A mass on a spring moves with simple harmonic motion 806
Simple harmonic motion is sinusoidal 809
Work out constants by comparing a situation-specific equation with a standard equation 810
The "This equation is like that one" Question 813
Anne forgot to mention something 815
The plants rock - and you rule! 821
But now the plant rocker's frequency has changed 822
The frequency of a horizontal spring depends on the mass 824
Will using a vertical spring make a difference? 824
A pendulum swings with simple harmonic motion 830
What does the frequency of a pendulum depend on? 831
The pendulum design works! 833
The "Vertical spring" Question 835
The "How does this depend on that" Question 836

think like a physicist

21

It's the final chapter

It's time to hit the ground running. Throughout this book, you've been learning to relate physics to everyday life and have absorbed problem solving skills as you've gone along. In this final chapter, you'll use your new set of physics tools to dig into the problem we started off with - the bottomless pit through the center of the earth. The key is the question: "How can I use what I know to work out what I don't know (yet)?"

You've come a long way! 840
Now you can finish off the globe 841
The round-trip looks like simple harmonic motion 842
But what time does the round-trip take? 843
You can treat the Earth like a sphere and a shell 845
The net force from the shell is zero 850
The force is proportional to the displacement, so your trip is SHM 853
The "Equation you've never seen before" Question 855
You know your average speed - but what's your top speed? 857
Circular motion from side-on looks like simple harmonic motion 858
You can do (just about) anything! 861

leftovers

The Top Six Things (we didn't c over)

No book can ever tell you everything about everything.

We've covered a lot of ground, and given you some great thinking skills and physics knowledge that will help you in the future, whether you're taking an exam or are just curious about how the world works. We had to make some really tough choices about what to include and what to leave out. Here are some topics that we didn't look at as we went along, but are still important and useful.

\#1 Equation of a straight line graph, $\mathrm{y}=\mathrm{mx}+\mathrm{c} 864$
\#2 Displacement is the area under the velocity-time graph 866
\#3 Torque on a bridge 868
\#4 Power 870
\#5 Lots of practice questions 870
\#6 Exam tips 871

equation table

Point of Reference

It's difficult to remember something when you've only seen it once.

Equations are a major way of describing what's going on in physics. Every time you use equations to help solve a problem, you naturally start to become familiar
 with them without the need to spend time doing rote memorization. But before you get to that stage, it's good to have a place you can look up the equation you want to use. That's what this equation table appendix is for - it's a point of reference that you can turn to at any time.

Mechanics Equations Table

how to use this book

Intro

In this section we answer the burning question: "So why DID they put that in a physics book?"

Who is this book for?

If you can answer "yes" to all of these:

Who should probably back away from this book?

If you can answer "yes" to any of these:
(1) Are you someone who's never studied basic algebra?
(You don't need to be advanced, but you should be able to add, subtract, multiply and divide. We'll cover everything else you need to know about math and physics.)
(2) Are you a physics ninja looking for a reference book?
(3) Are you afraid to try something different? Would you rather have a root canal than mix stripes with plaid? Do you believe that a physics book can't be serious if it involves implementing a training schedule for thoroughbred hamster racing?
this book is not for you.

> [Note from marketing: this book is
> for anyone with the cash to buy it.J

We know what you're thinking

"How can this be a serious physics book?"
"What's with all the graphics?"
"Can I actually learn it this way?"

We know what your brain is thinking

Your brain craves novelty. It's always searching, scanning, waiting for something unusual. It was built that way, and it helps you stay alive.

So what does your brain do with all the routine, ordinary, normal things you encounter? Everything it can to stop them from interfering with the brain's real job - recording things that matter. It doesn't bother saving the boring things; they never make it past the "this is obviously not important" filter.

How does your brain know what's important? Suppose you're out for a day hike and a tiger jumps in front of you, what happens inside your head and body?

Neurons fire. Emotions crank up. Chemicals surge.
And that's how your brain knows...

This must be important! Don't forget it!

But imagine you're at home, or in a library. It's a safe, warm, tiger-free zone. You're studying. Getting ready for an exam. Or trying to learn some tough technical topic your boss thinks will take a week, ten days at the most.
Just one problem. Your brain's trying to do you a big favor. It's trying to make sure that this obviously non-important content doesn't clutter up scarce resources. Resources that are better spent storing the really big things. Like tigers. Like the danger of fire. Like how you should never have posted those photos on your Facebook page.

And there's no simple way to tell your brain, "Hey brain, thank you very much, but no matter how dull this book is, and how little I'm registering on the emotional Richter scale right now, I really do want you to keep this stuff around."

We think of a "Head First" reader as a learner.

So what does it take to learn something? First, you have to get it, then make sure you don't forget it. It's not about pushing facts into your head. Based on the latest research in cognitive science, neurobiology, and educational psychology, learning takes a lot more than text on a page. We know what turns your brain on.
 exercises, and thought-provoking questions, and activities that involve both sides of

Get-and keep-the reader's attention. We've all had the "I really want to learn this but I can't stay awake past page one" experience. Your brain pays attention to things that are out of the ordinary, interesting, strange, eye-catching, unexpected. Learning a new, tough, technical topic doesn't have to be boring. Your brain will learn much more quickly if it's not.

Touch their emotions. We now know that your ability to remember something
is largely dependent on its emotional content. You remember what you care about. You remember when you feel something. No, we're not talking heart-wrenching stories about a boy and his dog. We're talking emotions like surprise, curiosity, fun, "what the...?" , and the feeling of "I Rule!" that comes when you solve a puzzle, learn something everybody else thinks is hard, or realize you know something that "I'm more technical than thou" Bob from engineering doesn't.

Metacognition: thinking about thinking

If you really want to learn, and you want to learn more quickly and more deeply, pay attention to how you pay attention. Think about how you think. Learn how you learn.

Most of us did not take courses on metacognition or learning theory when we were growing up. We were expected to learn, but rarely taught to learn.

But we assume that if you're holding this book, you really want to learn how to do physics. And you probably don't want to spend a lot of time. If you want to use what you read in this book, you need to remember what you read. And for that, you've got to understand it. To get the most from this book, or any book or learning experience, take responsibility for your brain. Your brain on this content.

The trick is to get your brain to see the new material you're learning as Really Important. Crucial to your well-being. As important as a tiger. Otherwise, you're in for a constant battle, with your brain doing its best to keep the new content from sticking.

So just how DO you get your brain to treat physics like it was a hungry tiger?

There's the slow, tedious way, or the faster, more effective way. The slow way is about sheer repetition. You obviously know that you are able to learn and remember even the dullest of topics if you keep pounding the same thing into your brain. With enough repetition, your brain says, "This doesn't feel important to him, but he keeps looking at the same thing over and over and over, so I suppose it must be."

The faster way is to do anything that increases brain activity, especially different types of brain activity. The things on the previous page are a big part of the solution, and they're all things that have been proven to help your brain work in your favor. For example, studies show that putting words within the pictures they describe (as opposed to somewhere else in the page, like a caption or in the body text) causes your brain to try to makes sense of how the words and picture relate, and this causes more neurons to fire. More neurons firing $=$ more chances for your brain to get that this is something worth paying attention to, and possibly recording.

A conversational style helps because people tend to pay more attention when they perceive that they're in a conversation, since they're expected to follow along and hold up their end. The amazing thing is, your brain doesn't necessarily care that the "conversation" is between you and a book! On the other hand, if the writing style is formal and dry, your brain perceives it the same way you experience being lectured to while sitting in a roomful of passive attendees. No need to stay awake.

But pictures and conversational style are just the beginning...

Here's what WE did:

We used pictures, because your brain is tuned for visuals, not text. As far as your brain's concerned, a picture really is worth a thousand words. And when text and pictures work together, we embedded the text in the pictures because your brain works more effectively when the text is within the thing the text refers to, as opposed to in a caption or buried in the text somewhere.

We used redundancy, saying the same thing in different ways and with different media types, and multiple senses, to increase the chance that the content gets coded into more than one area of your brain.

We used concepts and pictures in unexpected ways because your brain is tuned for novelty, and we used pictures and ideas with at least some emotional content, because your brain is tuned to pay attention to the biochemistry of emotions. That which causes you to feel something is more likely to be remembered, even if that feeling is nothing more than a little humor, surprise, or interest.
We used a personalized, conversational style, because your brain is tuned to pay more attention when it believes you're in a conversation than if it thinks you're passively listening to a presentation. Your brain does this even when you're reading.
We included more than 80 activities, because your brain is tuned to learn and remember more when you do things than when you read about things. And we made the exercises challenging-yet-do-able, because that's what most people prefer.

We used multiple learning styles, because you might prefer step-by-step procedures, while someone else wants to understand the big picture first, and someone else just wants to see an example. But regardless of your own learning preference, everyone benefits from seeing the same content represented in multiple ways.

We include content for both sides of your brain, because the more of your brain you engage, the more likely you are to learn and remember, and the longer you can stay focused. Since working one side of the brain often means giving the other side a chance to rest, you can be more productive at learning for a longer period of time.
And we included stories and exercises that present more than one point of view, because your brain is tuned to learn more deeply when it's forced to make evaluations and judgments.
We included challenges, with exercises, and by asking questions that don't always have a straight answer, because your brain is tuned to learn and remember when it has to work at something. Think about it-you can't get your body in shape just by watching people at the gym. But we did our best to make sure that when you're working hard, it's on the right things. That you're not spending one extra dendrite processing a hard-to-understand example, or parsing difficult, jargon-laden, or overly terse text.
We used people. In stories, examples, pictures, etc., because, well, because you're a person. And your brain pays more attention to people than it does to things.

Here's what YOU can do to bend your brain into submission

So, we did our part. The rest is up to you. These tips are a starting point; listen to your brain and figure out what works for you and what doesn't. Try new things.
Cut this out and stick it on your refrigerator.
(1) Slow down. The more you understand, the less you have to memorize.
Don't just read. Stop and think. When the book asks you a question, don't just skip to the answer. Imagine that someone really is asking the question. The more deeply you force your brain to think, the better chance you have of learning and remembering.

Do the exercises. Write your own notes.

We put them in, but if we did them for you, that would be like having someone else do your workouts for you. And don't just look at the exercises. Use a pencil. There's plenty of evidence that physical activity while learning can increase the learning.

Read the "There are No Dumb Questions"
That means all of them. They're not optional sidebars-they're part of the core content! Don't skip them.

Make this the last thing you read before bed. Or at least the last challenging thing.
Part of the learning (especially the transfer to long-term memory) happens after you put the book down. Your brain needs time on its own, to do more processing. If you put in something new during that processing time, some of what you just learned will be lost.

(5) Drink water. Lots of it.

Your brain works best in a nice bath of fluid. Dehydration (which can happen before you ever feel thirsty) decreases cognitive function.

Talk about it. Out loud.

Speaking activates a different part of the brain. If you're trying to understand something, or increase your chance of remembering it later, say it out loud. Better still, try to explain it out loud to someone else. You'll learn more quickly, and you might uncover ideas you hadn't known were there when you were reading about it.

Listen to your brain.

Pay attention to whether your brain is getting overloaded. If you find yourself starting to skim the surface or forget what you just read, it's time for a break. Once you go past a certain point, you won't learn faster by trying to shove more in, and you might even hurt the process.

Feel something.

Your brain needs to know that this matters. Get involved with the stories. Make up your own captions for the photos. Groaning over a bad joke is still better than feeling nothing at all.
(9) Do lots of physics!

The main way to learn how to do physics is by... doing physics. And that's what you're going to do throughout this book. We're going to give you a lot of practice: every chapter has exercises that pose problems for you to solve. Don't just skip over them - a lot of the learning happens when you solve the exercises. We included a solution to each exercise - don't be afraid to peek at the solution if you get stuck! Look at the first couple of lines, then turn back and take it from there yourself! But try to solve the problem before you look at the solution. And definitely make sure you understand the solution before you move on to the next part of the book.

Read Me

This is a learning experience, not a reference book. We deliberately stripped out everything that might get in the way of learning whatever it is we're working on at that point in the book. And the first time through, you need to begin at the beginning, because the book makes assumptions about what you've already seen and learned.

We begin with experiments, measurements, graphs and equations, then move on to forces and energy conservation, and then more advanced topics such as gravitation and simple harmonic motion.

It's important to start with a firm foundation. We start out with the building blocks and tools of physics - experiments, measurements, graphs, equations - and most importantly, how to approach problems by thinking like a physicist. But this is no dry, theoretical introduction. Right from the word go, you'll be picking up these important skills by solving problems yourself. As the book goes on, your brain is freed up to learn new concepts such as Newton's Laws and energy conservation because you've already absorbed and practiced the fundamentals. By the time you reach the end of the book, you'll even be sending people into space. We teach you what you need to know at the point where it becomes important, as that's when it has the most value. Yes - even the math!

We cover the same general set of topics that are in the mechanics sections of the AP Physics B and A Level curriculums

While we focus on the overall learning experience rather than exam preparation, we provide good coverage of the mechanics sections of the AP Physics B and A Level curriculums, as well as the practical side of experiments and data analysis in physics. This means that as you work your way through the topics, you gain a deeper understanding that will help you get a good grade in whatever exam you're taking. You'll also learn how to break down complicated problems into simpler ones that you already know how to do. This is a far more effective way of learning physics than rote memorization, as you'll feel confident about tackling any problem even when you haven't seen one exactly like it before.

We help you out with online resources.

Our readers tell us that sometimes you need a bit of extra help, so we provide online resources, right at your fingertips. We give you an online forum where you can go to seek help, and other resources too. The starting point is

http://www.headfirstlabs.com/books/hfphy/

The activities are NOT optional.

The exercises and activities are not add-ons; they're part of the core content of the book. Some of them are to help with memory, some are for understanding, and some will help you apply what you've learned. Don't skip the exercises. The crossword puzzles are the only thing you don't have to do, but they're good for giving your brain a chance to think about the words and terms you've been learning in a different context.

The redundancy is intentional and important.

One distinct difference in a Head First book is that we want you to really get it. And we want you to finish the book remembering what you've learned. Most reference books don't have retention and recall as a goal, but this book is about learning, so you'll see some of the same concepts come up more than once.

The Brain Power exercises don't have answers.

For some of them, there is no right answer, and for others, part of the learning experience of the Brain Power activities is for you to decide if and when your answers are right. In some of the Brain Power exercises, you will find hints to point you in the right direction.

The technical review team

Technical Reviewers:

John Allister has degrees from both Oxford and Cambridge universities, including a Master's in Experimental and Theoretical Physics. He taught physics for 5 years and is currently training for ordination in the Church of England.

Scott Donaldson is an editor, do-it-yourselfer, and all around lover of science and mathematics, with special focus on mechanics and biology.

Georgia Gale Grant is a freelance science writer, communicator and broadcaster. She read Chemistry at Oxford University before an MSc in Science Communication at Imperial College London.
Diane Jaquith earned her Master's degree in Physics at Wesleyan University. She taught physics, chemistry, and physical science at Durham High School, Durham, CT. She later taught chemistry at Notre Dame College and Pinkerton Academy in Derry, NH.

Catriona Lang studied singing at Birmingham Conservatoire. She currently earns her living as a singing teacher.

Marion Lang is a Classics graduate from St Andrews University who now works as a Nursery Teacher and also runs NYCoS Mini Music Makers classes. She is a member of Stirling Gaelic Choir.

Bill Mietelski is a Software Engineer and a huge Head First \& Kathy Sierra fan. He plans on putting the things he learned in Head First Physics to good use while improving his golf game.

Michael Lew is an AP* Physics and Computer Science teacher at Loyola High School in Los Angeles, CA and has been teaching since 1991. In his spare time, he enjoys spending time with his wife, Britt, and his three children, Mike, Jade, and Dane.

Alice Pitt-Pitts enjoyed being a guinea pig reviewer for Head First Physics. She also likes reading, cycling and ice cream and now knows that all of these involve energy conservation!

Acknowledgments

The editors:

Thanks go to Catherine Nolan and Brett McLaughlin, who were editors on this project at various points, and coped admirably with the US-UK time difference. Thanks also to Mike Loukides for starting the whole thing off as far as Head First Physics was concerned.

The O'Reilly team:

Thanks go to Lou Barr for turning my "wouldn't it be dreamy if..." thoughts into reality with any artwork that's more complicated than a line drawing. And also to Brittany Smith, who pulled off the impossible in the final stages of production. Plus Laurie Petrycki, Caitrin McGullough, Sanders Kleinfeld, Julie Hawks, Karen Shaner and Keith McNamara.

The reviezvers:

Thanks to everyone on the opposite page. In particular, I'd like to mention Donald Wilke for his extremely detailed physics-specific comments and John Allister for a physics educator point of view that spanned the whole book. A lot of improvements post tech review were down to the comments of physics guinea-pigs Marion Lang, Catriona Lang and Alice Pitt-Pitts, who did a sterling job of pointing out where things could be clearer.

As well as to say:
"thanks," this is an experiment to test the theory that everyone mentioned in a book will buy a copy.

The distributed.physics project:

Like distributed
computing, but
with a physics book.

Between them, these heros and heroines got through a draft of the entire book in a single day...
Alice Pitt-Pitts, Andrew Lynn, Brian Widdas, Catriona Lang, Emma Simmons,
Gareth Poulton, Graham Wood, Hazel Rostron-Wood, Jason Williams, John
Vinall, Marion Lang, Peter Scandrett, Robin Lang, Roger Thetford, Stephen
Swain, Tim Bannister, Tim Dickinson and Will Burt.

Safario Books Online

Safari. When you see a Safari® icon on the cover of your favorite technology book that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search thousands of top tech books, cut and paste code samples, download chapters, and find quick answers when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

1 think like a physicist

In the beginning ...

Physics is about the world around you and how everything in it works. As you go about your daily life, you're doing physics all the time! But the thought of actually learning physics may sometimes feel like falling into a bottomless pit with no escape! Don't worry... this chapter introduces how to think like a physicist. You'll learn to step into problems and to use your intuition to spot patterns and 'special points' that make things much easier. By being part of the problem, you're one step closer to getting to the solution...

Physics is the world around you

Physics is about the world around you and how stuff in the world actually works. How do you aim a cannon with no direct line of sight? How can a satellite orbit the earth without falling back down? Will you win a prize shooting ducks at the fairground? Will the Dingo catch the Emu...

All of this should be really interesting... except that opening a normal physics textbook can make you feel rather like you've just fallen into a bottomless pit....

You already know more

than you think you do!

Imagine you're part of a physics problem. What would you feel?

\square
You can get a feel for what's going on by being a part of it.

Places where important or interesting things happen.

Where have you seen or experienced something like this before?

V
You can use your life experience to spot what things are like.

You don't pass physics by memorizing things. You pass physics by learning how to think about it.

This book is all about learning to think like a physicist.

You can get a feel for what's happening by being a part of it

Abstract

The best way to get started with any kind of physics is to imagine that you're there, in the middle of it. Maybe you're a block, or a car, or a racing driver. Then ask yourself, "What would I feel?"

Which direction am I moving in?
Am I speeding up or slowing down?
Is there anything pushing or pulling me?
(and so on...)
Be a part of it!

Go to the start of the problem then BE a part of it!

So - could you ever escape from the bottomless pit?

Suppose you really are falling into a bottomless pit that runs from one side of the world to the other. What do you think would happen (assuming that the earth isn't hot and molten inside)?

Not sure where to start? That's okay ... break it down and go right back to the beginning. Be a part of the problem! Ask yourself, "What would I feel just after I step into the tunnel?"

DIRECTION:

Your job is to imagine you just stepped out over a bottomless pit. What would Which direction are you moving in? Are you speeding up or slowing down?
WHY are you feeling that?

SPEED:
\qquad
WHY

Ask yourself, "What would I FEEL if I was part of the scenario?"

BE pali of it - Solution Your job is to imagine you just stepped out over a bottomless pit. What would you feel if you were part of the scenario? Which direction are you moving in? Are you speeding up or slowing down?
WHY are you feeling that?

DIRECTION: I fall down, into the tunnel.

SPEED: I get faster as I fall.

WHY: Gravity attracts me into the earth.

Relax
Don't worry if you wrote down something a bit different.
This is what we wrote. Your answers should be similar, but maybe not identical.
there are no
Dumb Questions

Q:- But all l've done is write down what I already knew and what was really obvious! I haven't worked out what happens inside the earth at all!
A: - Physics is about being able to put yourself into a problem and asking "What would I feel?" When you're doing this, you need to start at the start - with what's initially going on.

Q: Why? It hasn't helped me get a final answer!

A :: Starting off a question with 'obvious' things gives your brain time to calm down and settle. It's the first step towards solving a more complicated problem. Once you've made a start, you can build on it by using your intuition and experience to spot 'special points' (where important or interesting things happen) and similarities to problems you've seen before.

Q:What if I start out OK then get stuck or make a mistake? Surely I've completely failed if I don't get the right answer at the end?
A : : Usually people grading exams are more interested in whether you understand the physics, even though the math part is important too. So, if you're able to start off in the right direction and show that you understand the important physics principles, you'll get credit for it even if you get stuck or make a mistake later on.

Q: But I still have no idea what happens next here! A: : You've already realized that gravity is important. And that you'll fall faster as you fall into the tunnel. That's a great start for you to build on.

Use your intuition to look for 'special points'

You've just started off the bottomless pit problem by being a part of it. You started at the start, imagined you'd just stepped over the edge, and asked yourself "What would I feel?" And you know that you'll fall into the tunnel, getting faster as you go.

But what happens next?

The key is to use your intuition to look for 'special points' - places where important or interesting things happen.

For example, the edge of a cliff is a special point because that's where you change from being supported by the ground to being unsupported. And the center of a seesaw is a 'special point' because it's the only place on the seesaw that one person can stand without either side going up or down.

The EDGE is the special point that makes the difference between being supported and unsupported.

> In physics, the 'special points' where
> things happen are usually at the EDGES and in the CENTER.

The CENTER is the special point that makes the difference between being balanced and unbalanced.
out what happens at one special point - the EDGE of the tunnel.

Spotting special points then asking "What would I feel if I was there?" helps you to understand what's going on.

You already did that for one special point - at the edge of the tunnel. Now it's time to look out for more special points in this problem, so you can think about what's going on there.

Once you know what's happening at each special point you can play connect the dots and work out what's happening in between too.

The edge of the tunnel is a special point. Can you spot any other special points in this problem?

So we just worked out that you fall into the tunnel from one special point - the edge. And now we're supposed to look for other special points.

Once you've found a special point, ask yourself: "What would I FEEL there?" and "What is being there LIKE?"

Jill: I have a hunch that the center of the earth must be important - it just looks like it must be!

Frank: Yeah. Even though we're assuming the center of the earth isn't hot (because we're dealing with an Earth which has lots of physics words written on it), the center still looks really important!

Jill: But what's gonna happen there?
Frank: I'm not sure. I guess that either you stop, or you keep on falling. But that's not narrowing it down all that much!
Jill: Maybe we can use what we already figured out? Didn't we say that when you're at the surface and step over the edge of the tunnel, you fall down into the tunnel because of gravity?

Frank: Yeah, that's right. I guess that the earth attracts you because it's so big. Gravity is the stuff the earth's made of and the stuff you're made of attracting each other, right?

Jill: And when you're at the surface - at the edge of the tunnel - the whole of the earth is under you. So gravity attracts you downwards.

Frank: Yeah, that makes sense. So what's going on in the center? The whole Earth isn't under you any more - it's kinda all around you. There's the same amount of Earth around you in all directions!

Jill: Then you must get pulled in all directions at once. Ouch!
Sounds like you'd get torn apart or something!
Frank: Hmm. The Earth's gravity isn't strong enough to pull my atoms apart when I'm standing on the surface. I have a feeling it'll be more like standing in the exact center of a seesaw.

Jill: You mean, kinda like a balance point? I guess if you were at either end of the seesaw - or at either end of the tunnel - you'd move. But if you're in the center of the seesaw - or the center of the earth, you're balanced.
Frank: Yeah. With the seesaw, it's like you have one foot 'pulling' you an equal amount each way, so you stay balanced. And in the center of the earth, you have half the earth on one side and half the earth on the other side. That's balanced too.

Jill: So you must stop when you reach the center of the earth if you balance there. We solved the problem - you never get out!

Frank: Hmm... but didn't we say before that you're already moving very fast by the time you reach the center?

The center of the earth is a special point

As Frank and Jill have worked out, the center of the earth is a special point where important or interesting things might happen. Maybe your eye was drawn to the center because of the symmetry, as there's the same amount of Earth around you in all directions.
So - be a part of it! Imagine yourself at the center of the earth. What would I feel there? What is being there like?

At the first special

 point - the edge of the tunnel-you're pulled downwards into the tunnel by gravity. This is because of the attraction between the "stuff" the earth's made of and the "stuff" you're made of.(Stuff isn't a particularly technical term - we're basically using it to mean all of your atoms.)

At the second special point, in the center of the earth, all of your atoms are pulled equally in all directions. You aren't attracted in any direction more strongly that you are in any other direction.
Being attracted in all directions at once may not sound like fun - but you're made of stronger stuff. The Earth's gravity isn't strong enough to pull your atoms apart. This means that all of the attractions balance each other out.

Ask yourself "What am I ALREADY doing as I reach the special point?"

But Frank and Jill nearly made a big mistake when they were thinking about out what it would feel like in the center of the earth. At first, they thought that if all the gravitational attractions balance out, then you'll be stationary in the center of the earth, like you are when you balance yourself on the center of a seesaw.

But is that really true? You're already going very fast when you reach the center of the earth. You've fallen a very long way to get there, moving faster and faster all the time. If all the attractions balance out, what is there to slow you down?

What is it like to be already going fast when there's nothing pulling or pushing you?

> When you put yourself in a problem, try to imagine what you're ALREADY doing when you reach the special point before going on to think about what happens next.

BE pate of it
Your job is to imagine that you're going very fast. Maybe you're a car or a speed skater. What it is LIKE to be going very fast when nothing can pull or push you, and you can't pull or push on anything either? That means no brakes and no grabbing on to something to slow down. Does this give you any clues about what it will be LIKE at the center of the earth when all the attractions balance out?

-BE part of it - Solution

 Your job is to imagine that you're going very fast. Maybe you're a car or a speed skater. What it is LIKE to be going very fast when nothing can pull or push you, and you can't pull or push on anything either? That means no brakes and no grabbing on to something to slow down. Does this give you any clues about what it will be LIKE at the center of the earth when all the attractions balance out? as getting fried isn't helpful.

If I can't brake or grab onto anything, then I can't slow down. I'll just keep on going really fast.
I think the same thing will happen in the center of the earth. None of the directions of attraction will "win", and I'II just keep on going at the same speed.

You might have said that it was LIKE something else. That's OK. The main thing is that you keep on going at the SAME SPEED if there's nothing pushing or pulling on you.

That's right - we've made some assumptions to turn the problem into a simpler version
We already made an assumption back on page 4 that (for this problem) the earth is solid and isn't hot in the middle,

And quite right - we're also assuming that air resistance doesn't slow you down and that the pit goes between the North and South poles, so you don't hit the sides as the earth turns.

In physics, the way of solving a complex problem is often to make approximations or assumptions to turn it into a simpler problem. That's OK, as you can ask yourself later on what the difference would be if you hadn't made the assumption. But only once you've got to come to grips with the simpler version.

In physics, you sometimes make approximations or assumptions to turn a complex problem into a simpler version.

Understanding the simpler version helps you with the complex version.

Where you're at - and what happens next?

You've learned to step into the problem, so you can be a part of it and ask "What would I feel" and "What's it like." This is a good way to start off and helps you see what the important things in the problem are. Here, you realized that gravity is important, and that you fall towards the center of the earth, getting faster and faster as you go.

You've also used your intuition to spot 'special points.' You've spotted that the center of the earth is a place where the gravitational attraction between the stuff you're made of and the stuff the earth's made of is the same in all directions.

And you worked out that this means you just keep on going at the same speed you were already going at as you pass through
 the center because there's nothing to slow you down! So you're going quickly, but you aren't getting faster and faster anymore.

But now you're through the center, what happens next? What would you feel? What's it like? You already know that gravity is important and that its influence depends on where you and the earth are compared to each other. So - what happens next?

Sharpen your pencil

What do you think happens after you pass through the center of the earth? Do you continue at the same speed? Do you start falling faster? Do you slow down? How far do you think you keep falling? Or do you think something else happens?

Draw a picture then write down any ideas you have.

\qquad
\qquad
\qquad
\qquad
Hint: Think about where the majority of the earth's "stuff" is when you're at various points in the tunnel.

What do you think happens after you pass through the center of the earth? Do you continue at the same speed? Do you start falling faster? Do you slow down? How far do you think you keep falling? Or do you think something else happens? Draw a picture then write down any ideas you have.

1. think that after passing through the center there starts to be more Earth above you than there is below you. This acts a bit like brakes - you're moving away from the center. but gravity's attracting you back in. The further from the center you are, the more Earth's above you, so the more you slow down. I think you'll be moving slower and slower until you reach the other side of the tunnel.

Center of the earth. you than below you.
\qquad n

This is an EXTREME,
another 'special point!'
You should never be afraid to ask questions!

Dumb Questions

Q: speeds you up when you fall. Now you're saying it can slow you down?

A:: Things are always attracted towards each other by gravity. Whether you're already moving away from the earth or moving towards it, you'll always be attracted towards the center of the earth.

Q:- But that doesn't say anything about speeding up or slowing down!

A:: You need to think about the speed and direction you're already traveling in. If you throw a ball up, it's moving away from the center of the earth, and it gets slower. When it comes back down again, it's moving towards the center of the earth, and it gets faster.

It looks like you're always attracted towards the center, right?

You're always attracted towards the center unless you're already in the center.

Right. When you're on the surface at the start, there's a lot more Earth under you than there is on top of you, and you're attracted towards the center. This makes you speed up.

When you're in the center, the attractions all cancel each other out, and you keep going at the same speed.

As you move through the center towards the other side, there's more and more Earth above you than there is below you. So you
 start being attracted back towards the center, which slows you down.

Now put it all together

Back on page 4, you wondered if you could ever escape from the bottomless pit. Being able to step out at the other side of the earth doesn't really count as escaping, as you'd be a very long way from where you started!

So - are you going to be able to get back home again, or are you doomed to hang out at the other end of the bottomless pit forever?

So - could you ever escape from the bottomless pit

fall if the bottomless pit on page 4 was real? Would you fall out the other end? Or get stuck? Or what?
That's a pretty hard thing to work out, so let's break it down
and go right back to the start

Sharpen your pencil

Could you ever get back home again - back to where you started before you fell in??
The pictures show what you've worked out for three special points so far. Use them to explain whether you think you'll ever be able to make it back home again.

Hint: Turn the book upside-down.
What's it LIKE?

Sharpen your pencil

Solution

Could you ever get back home again - back to where you started before you fell in??
The pictures show what you've worked out for three special points so far. Use them to explain whether you think you'll ever be able to make it back home again.

If you're at the other end of the tunnel, you can just step back in again and do the entire journey in the opposite direction! It's all exactly the same as your original trip through the earth - speed up, through center, slow down, emerge - except you're going back the way you came.

Though do be careful - if you forget to step off the Earth Express at the other end, you'll fall back into the tunnel again and keep on falling to and fro through it! ?

Not only can you escape, you end up on top of the world!

(As long as you remember to step off here!)

You can get a feel for what's going on by being a part of it.

Places where important or interesting things happen.

You can use your intuition to spot special points.
Where have you seen or experienced something like this before?

You can use your life experience to spot what things are like.

Your Physics Toolbox

You've got Chapter 1 under your belt, and you've added some problem-solving concepts to your toolbox.

Be Part of It

Putting yourself in the heart of the problem often gives you clues about what might be happening. You can draw on your experience because physics is all about how the world works, and you've got plenty of experience there. Imagine yourself in the scenario and ask "What would I feel?"

What's it LIKE?

You can get a long way with physics problems by asking yourself what the situation is LIKE.
It may look very different on the surface - but if you can spot an analogy or pattern and can connect the situation to something you already know how to deal with, you're sorted.

Be visual!

Engage the whole of your brain by "thinking aloud" in pictures as well as in words. Drawing the scenario and then annotating it with what you know is one of the most what you know is one of the
powerful tools in your toolbox.

2 making it all MEAN something

* Units and ${ }^{\text {neasurements }}$

How long is a piece of string? Physics is based on making measurements that tell you about size. In this chapter, you'll learn how to use units and rounding to avoid making mistakes - and also why errors are OK. By the time you're through, you'll know when something is significant and have an opinion on whether size really is everything.

It's the best music player ever, and you're part of the team!

Introducing the myPod - a revolution in portable music players!
Your design team has just finished the final case prototype. Now
you need to draw up the blueprints to be sent to the factory that's
manufacturing the cases.

MEMO

From: myPod Case Design Team
We've just sent over the latest, and hopefully final, model myPod case design.
Could you draw up the plans and send them to factory where the cases are being manufactured? And send us back the myPod model when you're done.
You will, of course, receive one of the limited edition numbered myPods for your troubles if you manage to turn this around quickly!

So you get on with measuring the myPod case

The quicker the factory gets the plans, the better.

Sharpen your pencil

Here's the myPod case with various lengths marked out that you'll need to measure. Cut out the ruler (or just use your own that looks similar to ours) and write in the lengths. (The myPod design team already started writing them on for you.)

When the myPod case comes back from the factory...

After a lightning-quick turnaround, the myPod case comes back from the factory. But there's a problem.

... it's waaay too big!

The myPod case is huge. Massive. Rocket-sized, not pocket-sized.
But when you give the factory a call, they say they followed your instructions exactly.

Cobrann -PONER

Something's obviously gone very wrong. But what?!
Have another look at your blueprint, and see if it could be interpreted differently.

There aren't any UNITS on the blueprint

The ruler you used is marked off in millimeters (mm)- but there aren't any notes on the blueprint that say this. The factory is used to working in inches and assumed it was a giant promotional item. Inches are around 25 times bigger than millimeters, so the myPod has come back MUCH bigger than expected!

In physics, it's really important to say what the units
 was supposed to mean 100 mm but ended up as 100 inches-taller than a person!

Units Magnets

Throughout the book, you'll be attaching lots of different units to numbers to give them meaning. Your job is to match the units with the kind of quantity they measure. You might not have heard of all of these, but give it a shot.

Units Magnets Solution

Check your work; were you able to match these up correctly?

Don't worry if you're not familiar with all of these units just quite yet.
You won't have to work with all of these unfamiliar units throughout the book! Instead, you'll be sticking with the system used worldwide, which is what the next couple of pages are all about!

You'll use SI units in this book (and in your class)

The system of units used in physics worldwide is called SI (short for Système Internationale). or UK A Level They're much easier to use since they go up in multiples of 1000 for each 'step.'

If you're working with lengths, instead of having to do calculations using 12 inches in a foot, 3 feet in a yard, and 1760 yards in a mile, you have 1000 millimeters in a meter, 1000 K Working with lengths meters in a kilometer, and so on and so forth.

And with masses, instead of having to remember that there are 16 ounces in a pound and 2000 pounds in a ton, you have 1000 milligrams in a gram, 1000 grams in a kilogram \longleftarrow And working with (about the equivalent of three cans of soda), and so on. The only SI unit which doesn't \leftrightarrows masses is easier too. follow this convention is time.

Multiplying and dividing by 1000 is more straightforward mental arithmetic, so calculations involving SI units are quicker and easier than calculations with other unit systems. If you're

But time is so widely agreed on; it'd be silly to reinvent it! converting meters to kilometers, you divide by 1000 (easier), but going from yards to miles involves dividing by 1760 (not straightforward, and definitely not mental arithmetic!).

It's easy to multiply and divide by 10 's using

Dumb Questions

Q: Run it past me again - why am I being forced to use SI units when I'm more used to yards and miles? I really have no idea how much a kilogram is!

$A:$
: SI units have been used throughout the world as the basic standard in physics since 1960. SI units are an agreed worldwide standard and make sure that everyone is using the same words and definitions when they make measurements.

$Q:$- But I don't see why I can't just use the units I'm more familiar with. Surely I'm less likely to make mistakes in calculations if I use units I'm used to?

A:SI units actually make calculations easier. Instead of having to use all sorts of weird ratios to move between units (like inches, feet, yards, miles), you'll use tens. So even if they're less familiar at first, they'll be quicker and easier in the long run.

Q: But I'm not at all familiar with sI units at the moment. What kinds of units am I going to come across?
$A:$ It's funny you should ask ...

Here are the SI units you'll use the most

Length

The SI unit of length is the meter.
Other related units are the millimeter (1000th of a meter), centimeter (100th of a meter), and kilometer (1000 meters).

The SI unit of time is the second.
To work with time units, you'll just use common sense. There are 60 seconds in a minute, 60 minutes in an hour, 24 hours in a day, and 365 days in a year.

Mass

The SI unit of mass is the kilogram.
Other related units are the gram (1000th of a kilogram) and the milligram (1000th of a gram).

If you use SI units, people all over the world will understand your measurements.

Q:It's a real pain to have to write out 'millimeters' or whatever every time. At least the units l'm used to have abbreviations - like lb for pounds.

A:: SI units have abbreviations too! Generally, you just use the first letter of the unit - m for meters, s for seconds, and so on.

Q:OK, but what about things that start with the same letter - meters and minutes, for example?
A: The main sl unit takes precedence. The main unit for length is the meter, so it gets abbreviated to ' m '. The main SI unit for time is the second - the minute is defined as 60 seconds, so it isn't as important and usually gets abbreviated as 'min'.

Q:OK, so what about kilometers and kilograms. They start with the same FOUR letters!
A : The 'kilo' is a prefix that goes in front of the unit. A kilogram is 1000 times more than a gram; a kilometer is 1000 times further than a meter. The abbreviation includes the prefix as well, so kilograms are 'kg' and kilometers are 'km'.

It's easier when everyone uses SI units.

Q: so "kilo" means 1000, right? But what does 'milli' mean, then? It sure meant 1000 when the millennium came around, but a millimeter and kilometer are different things, right?!

A: Great observation! Kilo is Greek for 1000, and milli is Latin for 1000. In the SI system, 'kilo' in front of a unit means it's 1000 times as big - so a kilogram is 1000 grams. And 'milli' in front of a unit means it's 1000 times smaller - so a millimeter is $1 / 1000$ th of a meter.

Q- I was kind of wondering something. The meter is the main SI unit, and it doesn't have a prefix before the unit. So why is the kilogram the main SI unit and not the gram? That's plain weird!
A: : Most everyday physics things like cars, people, and such have masses that are a nice manageable number of kilograms, but thousands, or even millions, of grams. It was a convention that everyone ended up using from 1960 onwards. It's easier when everyone does the same thing!

Joe: Yeah. I guess we can remeasure the myPod using a ruler marked off in inches and make a new blueprint.

Frank: That sounds like an awful lot of work. It took ages to measure all the lengths in the first place, and I can't face having to do it all over again with inches instead of mm .

Joe: Do we definitely have to remeasure though? Can we do something with the measurements we already made instead?

Jim: It would be nice if they wanted the blueprint in centimeters instead. Then we'd just have to multiply each measurement by 0.1 to convert it from mm to cm .

Frank: How does that work?
Jim: We already know that there are 10 mm in 1 cm , which means that $1 \mathrm{~mm}=0.1 \mathrm{~cm}$. For every mm, you have 0.1 cm . So if you multiply the number of mm by 0.1 , you get the number of cm .

Frank: You mean if the measurement is 23 mm , you multiply the number of mm in the measurement by the number of cm that's equivalent to 1 mm . So $23 \times 0.1=2.3 \mathrm{~cm}$. But what about the blueprint? That needs to be in inches, not cm , right?

Joe: What if we find out how may inches $\mathbf{1} \mathbf{~ m m}$ is? Can't we do exactly the same thing we just did going from mm to cm ?
Jim: Hmm ... Yes, I think we could.
Frank: So we'd multiply the length in mm by the number of inches that's equivalent to 1 mm . It's the same thing that we did to convert a measurement from mm to cm , but it's more useful, as it's what we're actually supposed to be doing!

Joe: So we can just use a calculator to do the new plans without remeasuring. That rocks!

Jim: Let's get to it!

You use conversion factors to change units

At the moment you have a myPod blueprint measured in millimeters that you want to convert to inches. Although the numbers you've written down on the blueprint will change, converting the units of a measurement doesn't change its size. The myPod still fits comfortably in your pocket whether its size is described using millimeters or inches!

A meaningful measurement consists of both a number and its units. A conversion factor is the number you need to multiply your measurement by to convert it from one set of units to another. For example, if you want to convert measurements from mm to cm , you multiply by 0.1 , as $1 \mathrm{~mm}=0.1 \mathrm{~cm}$.

Most physics books have a table you can use to look up less obvious conversion factors (for example, to convert non-SI units to SI units). Google Calculator can also do the same job. If you don't have access to a computer, we've also included some conversion factors in Appendix B.

Make sure you don't put "quotes around this, or Google will look for web pages containing that phrase instead of looking up the conversion factor.

Sharpen your pencil

Time to work out a conversion factor to change the myPod blueprint from mm to inches!

Type 1 mm in inches into Google (or look it up in a book).
Write how many inches 1 mm is here:
Remember to give your answer MEANING and CONTEXT by mentioning its UNITS.

You can write a conversion factor as a fraction

Now that you know that 1 millimeter is the same as 0.0393700787 inches, you need to do some math to convert the other myPod measurements to inches.

The key is writing your conversion factor as a fraction so that the top and bottom of the fraction are both the same size:

You can then multiply your measurement by the conversion factor fraction. Since the top and bottom of the fraction are the same size (or length), multiplying by the fraction is the same as multiplying by 1 , and the size of your measurement doesn't change.
But multiplying by the conversion factor will change the units of your measurement, which is what you want to do!

> If you multiply a measurement by a conversion factor, you don't change its size, but D0 change its UNITS.

The top and same size.
 of your answer. You're expecting a number less expecting a so this looks OK.

there are no

 Dumb QuestionsQ:. I don't get the "conversion factor is equal to 1 " thing. How can that be when there are different numbers on the top and bottom?
A : There aren't just different numbers on the top and bottom of the fraction - there are also different units.

The top and bottom of the fraction are exactly the same size, so the fraction equals 1 . The numbers are different because they're expressed in different units.

Q: And being able to write the fraction in two different ways isn't a problem because I can work out which one to use from the units?
A : Yes. You want the old units to divide out so that you're just left with the new units. Set up your fraction in a way that ensures this will happen.

Or you can think, "Do I expect the answer to be bigger or smaller than the number I started with?" That works too.

Q:So far, we've wanted to go from millimeters to inches. But if I wanted to go FROM inches TO millimeters, would I just turn the fraction the other way up?

A: Absolutely! Though always do an error-check just in case. Ask yourself if the units are going to divide out, and check that the answer's around the size you expected.

Units help you keep track of trickier problems.

Here you're only converting one set of units. But sooner than you think, you'll be asked to work out how many seconds are in a year, which will involve you converting to minutes, then hours, then days, and finally years - a calculation that uses five different units in total!

So it's best to practice simpler problems using the same techniques you'd have to use for more difficult problems. It's like practicing individual tennis shots over and over to perfect your technique. Then when you face a difficult opponent, the shot is totally second nature, and your brain is free to think about the match situation.

There's also the fact that examiners will reward you for showing your work, even if you get the final answer wrong! In your exam, you get rewarded for demonstrating that you understand the physics - and that means you must show the examiners how you worked out your answer.

Now you can use the conversion factor to update the blueprint

OK, so you used Google Calculator to find out that $\mathbf{1 ~ m m}=\mathbf{0 . 0 3 9 3 7 0 0 7 8 7}$ inches.
Now it's time to modify the blueprint so that it uses inches instead of millimeters, and the factory can cope with it.

There's some space over here for your work.

Remember to write the UNITS

Here's the blueprint with some of the millimeter lengths marked. Convert them to inches and earn that limited edition player! Remember to show your work (there's space down the right for that).

Sharpen your pencil

> If you need to change units during a problem, look up a conversion factor to help, and show your work when you do it!

You just converted the units for the entire blueprint!

After converting all measurements from mm to inches and checking that the units are written at the end of every number, you send the blueprints off to the

It's important to make sure you include the units EVERY time you write down a number as a final answer. factory and dream of your limited edition myPod ...

But there's STILL a problem ...

A couple of hours after mailing the blueprints, you get a call from the factory. They're saying that they can't follow the instructions on the blueprint, as they're not capable of manufacturing the myPod case to the nearest 0.0000000001 inch!

What could have caused this new problem? And how can you fix it?

What to do with numbers that have waaaay too many digits to be usable

Right now your problem is that the numbers on the blueprint have too many digits. The blueprint says that the myPod is 2.362204722 inches wide, which implies that you measured it to the nearest 0.000000001 inch. But unless you have a ruler that can measure individual atoms, you didn't!

You have to decide how many of the digits in your answers are significant. A number's most significant digit is the one that tells you the most about how big the number is - usually the first non-zero digit. The next-most significant digit is the next one along, and so on.

The most significant digit is the one that tells you the most about the SIZE of the number. The most significant digit in this number is the units digit.

If your number is 0.0022 , then it's the thousandths digit that's the most significant.

Don't worry if you've heard this called 'significant figures' in the past. Significant digits and significant figures are two different names for exactly the same thing.

How many digits of your measurements look significant?

Since the numbers on your blueprint have too many digits, it makes sense to round them to get rid of some of the less significant digits. For instance, if you round 2.362204722 inches to one significant digit, it's 2 inches (since it's closer to 2 than it is to 3); to two significant digits it would be 2.4 inches (since it's closer to 2.4 than it is to 2.3).

But how many significant digits should you round your measurements to?

Don't worry too much about this - you'll be looking at rounding numbers on the next couple of pages.

The first THREE digits of a number are the most significant. The other digits don't contribute much to the SIZE of the number.

Generally, you should round your answers to three significant digits

Unless you have extra information you can use to help, you should round your final answers for any calculation to three significant digits. The other digits in the number don't really contribute towards the size of the number.

You need to follow certain rules when you're rounding answers

When you're rounding a number, look at the digit to the right of the final significant digit that you want to round to. If this digit is 4 or less, then round down. If it's 6 or more, then round up.

So you would round down the width of the myPod, 2.3622... inches, to 2.36 inches, as it's closer to 2.36 than it is to 2.37 . But you'd round up a measurement of $4.5874 \ldots$ inches to 4.59 inches, as it's closer to 4.59 than it is to 4.58.

If the digit to the right of your final significant digit is a 5 , then look to see if there's another digit after the 5 . If there is, round up. If there isn't, round upor down to the nearest even digit. So 2.365 would round down to 2.36 , and 2.375 would round up to 2.38 .

Once you've rounded your answer, always say how many significant digits you've rounded to, for example, by writing $2.36(3 \mathrm{sd})$. sd stands for "significant," digits."

> When you're rounding a number, the digit to the right of your final significant digit tells you what to do.

If the digit to the right of your last significant digit is a 5 and there are other digits after it, round up.

If the digit to the right of your last significant digit is 5 and there aren't any more digits, round up or down to the nearest even number.

Significant digits and decimal places aren't the same

They may both be ways of describing how many digits to include in a number, but they're not the same as each other.

When you represent the number 2.3622... using squares and columns, you can see that the first three digits contribute far more to the size of the answer than the rest. So you round it to three significant digits, 2.36 $(3 \mathrm{sd})$, which also happens to be the same as rounding it to 2 decimal places ... this time.

However, if the number had been 236.22, you could have drawn it out in just the same way. And again, the first three digits are by far the most significant, so you'd round it to 236 (3 sd) just like last time. But this time, you're rounding the number to 0 decimal places.
As it's always the first three digits of an answer that are the most important regardless of how big the number is, it's best to think about significant digits rather than decimal places when you're doing physics.

Thousandths

Is it OK to round the myPod blueprint to three significant digits?

You've already come a long way towards earning that free limited edition myPod! First, you measured the myPod case with your ruler and produced a blueprint so that the factory could produce the cases.
After a blip where the case came back 25 times too big (because there weren't any units on the blueprint, the factory assumed it was a giant promotional item), you came storming back and learned that with conversion factors, you can change the mm to inches without remeasuring the myPod.

Then, the factory pointed out that the converted measurements had too many digits in them - don't believe everything your calculator tells you! But you realized that some digits are more significant than others, as they tell you the most about the size of the number. And you learned that, in general, you should round calculations to three significant digits. So ... are you set to go?

You ALREADY intuitively rounded your original myPod measurements!

When you were measuring the myPod to draw your original plan, you probably found that some of the dimensions weren't a whole number of millimeters long. The thing you were measuring didn't exactly line up with one of the scale divisions on your ruler.

When this happened, you may have intuitively rounded it to the nearest mm . If a measurement is between 6.5 and 7 mm , you'd round up to 7 mm . And if it's between 7 and 7.5 mm , you'd round down to 7 mm .

We've enlarged this image so you can see what's going on more clearly.

You should always round your measurement to the
nearest scale division on your measuring apparatus.

Any measurement you make has an error (or uncertainty) associated with it

Any time you make a measurement, you intuitively round it to the nearest scale division on your measuring apparatus. But this means that a measurement you make with your ruler and write down as " 7 mm " could actually range from just over 6.5 mm to just under 7.5 mm .

If you make a measurement, it's important that you (and any others using it) know how much uncertainty or error is associated with it. Was the 7 mm length measured using a ruler with a scale division of 1 mm , or with a micrometer with a scale division of 0.001 mm ?

If you make a drawing of the thing you're measuring, you can show the range that the measurement may lie in using error bars, which mark the range's extremes.

If you write down your measurement, you can show the margin of error using numbers. The 7 mm measurement made using the ruler might be up to 0.5 mm larger (and rounded down to 7 mm) or 0.5 mm smaller (and rounded up to 7 mm). You write this as $7.0 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$.

Because you round your measurements to the nearest scale division, the associated error is always \pm half a scale division.

$$
\begin{aligned}
& \text { You say this as } \\
& \text { "plus or minus." }
\end{aligned}
$$

Q:If my measurement has an error, does that mean I did something wrong?

A: No! In this context, "error" is another word for "uncertainty" - the range that your measurement might fall into.

Q:I can eliminate the error on a measurement completely if I have a good enough measuring device, right?

A: Not really. You can reduce it, like by using a micrometer where the error is $\pm 0.0005 \mathrm{~mm}$ instead of a ruler where it's $\pm 0.5 \mathrm{~mm}$. But no surface is ever perfectly smooth at the atomic level, so you'd never be able to completely eliminate uncertainty.

Q: so is trying to reduce errors associated with measurements a good thing, or is that just being a perfectionist?
A : The smaller the error on your measurements, the more certain you can be of your results.

Q:OK. But a couple of pages ago, we decided we should round calculations to 3 significant digits. But now we're making measurements like $7.0 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$. Neither the measurement nor the error have three significant digits!
A: That (general) rule was for calculations, not for raw measurements.

A measurement quoted as " 7 mm " will actually lie somewhere in the range from 6.5 mm to 7.5 mm .
This is written as $7 \mathrm{~mm} \pm 0.5 \mathrm{~mm}$.

QBut if we know how the measurements were originally made, surely that affects how I round the converted values on the blueprint?

A:Yes. Rounding to three significant digits is a general rule when you don't know how the measurements you used in your calculation were made. But when you have more information about the error, you can propagate that through the unit conversion.

Q:- That kinda makes sense, but how do I actually DO it?

A: It's funny you should ask - that's what we're just getting on to now.

The error on your original measurements should propagate through to your converted blueprint

You already used your ruler to round the myPod measurements to the nearest mm . This gives you the error associated with each measurement.
To work out the equivalent to rounding like this using inches, you need to convert your error from mm to inches. Then you can write your final answers in inches, along with their errors in inches, so the factory knows how well they have to measure.

The SIZE of the thing you're measuring doesn't change when you convert its units.

Round converted errors to ONE significant digit.

Once you've converted your error, it's conventional to round it to one significant digit. Then you round the measurement to the last digit affected by the error (which is the same as saying "round to the same number of decimal places as the error").
So if a converted error becomes ± 0.061842375 inches, you'd round it to one significant digit: ± 0.06 inches (1 sd). So a measurement of 27 mm , which converts to 1.0106299213 inches, would be rounded to 1.01 inches ± 0.06 inches since the hundredths digit of the answer is the last to be affected by the error.

It's conventional to round converted errors to 0 NE significant digit, then round converted measurements to the last digit affected by the error.

Right! Time to attack the blueprint again!

Now that you know how to convert measurements and how many significant digits to include, it's time to attack the blueprint again!

Sharpen your pencil

Use the page opposite to work out how many significant digits to quote the measurements to. Write your rounded answers in the boxes! Remember, you originally measured the myPod to the nearest mm , and Google Calculator told you that $1 \mathrm{~mm}=0.0393700787$ inches.

Remember to state the error on your measurements.

There's some space down here for you to work out the error on your measurements. Make sure you explain the stages you're going through.

Sharpen your pencil Solution

Use the page opposite to work out how many significant digits to quote the measurements to. Write your rounded answers in the boxes! Remember, you originally measured the myPod to the nearest mm, and Google Calculator told you that $1 \mathrm{~mm}=0.0393700787$ inches.

Remember to state the error on your measurements.

There's some space down here for you to work out the error on your measurements. Make sure you explain the stages you're going through.

Scale division on original ruler is 1 mm , so error on measurement is $\pm 0.5 \mathrm{~mm}$.

Convert error: 0.5 mm in inches
$=0.5 \mathrm{~mm} \times \frac{0.0393700787^{\prime \prime}}{1 \mathrm{~mm}}$
$=0.01968503935^{\prime \prime}$

Round error to I sd:
Error $= \pm 0.02^{\prime \prime}$ (sd)
So quote myPod measurements to the same number of decimal places. ($1 n$ this case, 2 decimal places.)

Hey ... are you ready to email those blueprints over yet? I'm kinda starting to worry that we 0 might not fix this in time ...

STOP!! Before you hit send, do your answers SUCK?!

What's happened so far has probably convinced you that it's a good idea to check over your answers before you turn them in. So - does your answer SUCK?

S is for Size-How big/small are you expecting the answer to be?
\mathbf{U} is for Units- Does the answer have units, and are they what was asked for?
C is for Calculations- Check them over and look out for silly mistakes!
\mathbf{K} is for ' \mathbf{K}^{\prime} 'ontext- Go back to the big picture - what are you trying to do, and is it the same as what you actually did to get your answer?

Always check your answers before moving on.

This is so you don't lose points in exams for doing 'silly things' that you could have avoided. SIZE- Are the answers the size you're expecting?
\qquad
\qquad

UUNITS- Do they have units, and are they what you were asked for?

CALCULATIONS- Did you do the math right?

\qquad
\qquad
"K'ONTEXT- What are you trying to do, and is it the same as what you actually did?
\qquad
\qquad

Sharpen your pencil
 Solution

Fill in the sections to see if your answer SUCKs.

This is an EXTREMELY
useful way of checking if
your answer is plausible.

SIZE- Are the answers the size you're expecting?
Well, inches are bigger than millimeters, so the inches measurements will be smaller numbers than the millimeter measurements. They seem about right for a music player.

u
UNITS- Do they have units, and are they what you were asked for?
The factory need inches, and I converted the lengths to inches. I also used the right number of significant digits.

CALCULATIONS- Did you do the math right?

1. think so . The conversion factor is the right way up (so the units divide out) and the sizes already checked out OK

"K'ONTEXT- What are you trying to do, and is it the same as what you actually did? I want to convert measurements from mm to inches using the correct number of significant digits (based on the error associated with the original measurements).

> ALWAYS ask yourself: "Does my answer SUCK?" before you move on to something else

You nailed it!

The blueprints are right at last, and the factory is happy! Before you know it, you're relaxing by the pool with your limited edition myPod.

But what about the giant myPod case the mailman delivered? It was used for an even more limited edition supergiant version that sold for thousands of dollars in an online auction, with massive publicity.

> Answers should have the same number of significant digits that you were provided with in the question.

The zero gives you extra information.
The number of significant digits you include in an answer implies the size of the error. The final digit you include is the one that is uncertain.

Here, your error is ± 0.02 inches - the length could be up to two hundredths of an inch either way. Writing down the measurement as 1.50 inches correctly implies that the hundredths digit is uncertain. But writing down 1.5 inches implies that the tenths digit is uncertain, as it's the last digit in the answer.

If you don't know what the errors are, use the same number of significant digits in the problem.

The first three digits of a number are the ones that are significant enough to be worth keeping when you round an answer. This means that most of the numbers you are given to work with are usually rounded to three significant digits.

So when you come up with an answer, you should also round it to three significant digits to preserve what was originally done to the number before you were given it.

When you write down a measurement, you need the right number of significant digits

If you write down a measurement of 1.5 inches, you're implying that it was measured to the nearest 0.1 inch (at best), i.e., the error is ± 0.05 inches.

If you write down a measurement of 1.50 inches, you're implying that it was measured to the nearest 0.01 inch (at best), ie., the error is ± 0.005 inches.

So if you write down 1.5 inches when you should have written down 1.50 inches, you're implying that the measurement is TEN times worse than it actually is.

We've enlarged this image, so you can see what's going on more clearly.

Reading is 1.5 inches.

> If you leave out a zero that would be affected by the error, you're implying that your measurement is TEN times worse than it actually is!

Q:In some physics books, there are tables of constants with lots of significant digits, like the speed of light = 29979245.8 meters per second. That implies an error of ± 0.05 meters per second. Am I really supposed to write down NINE significant digits when the error propagates through to my answer?
A: : When you're asked to work with numbers like that, don't round anything until you reach the end of your calculation. It's normal then to round your final answer to three significant digits.

Q:I'm a bit confused about zeros now. At first I thought they were just placeholders, but now you're saying they're sometimes significant. The zeros in the number 0.005 aren't significant, right? So how can I tell whether a zero is significant or not?
A : we're just going to interview a zero to get it all straightened out ...

Zeros Exposed
This week's interview: Hero or Zero?

Head First: Now, onto today's special guest - a very well known figure. As one of the papers asked recently - hero or a lot of fuss about nothing? So, Zero, what's your take on this debate about your importance?

Zero: Well, the short answer to your question is that my significance kinda depends on where I am in a situation.

Head First: How do you mean? Surely you'll be equally significant - or might that be insignificant - to anyone doing math all around the world? What's location gotta do with it?

Zero: I don't mean where in the world you find me. I mean where in the number you find me!

Head First: So, you reckon your significance depends on where in a number you are. But surely zero is zero, whether it's zero units, zero tenths, or so forth?

Zero: Well, yes, that's why I was originally invented - so you wouldn't lose your place in a number.
Head First: So you're just a placeholder, right?
Zero: Oh no, not at all! Sometimes I'm a placeholder, but sometimes I'm really significant!

Head First: You're gonna have to help me here ...
Zero: Well, I'm a placeholder if I'm at the left of a decimal point in a number that's less than 1. Like in 0.00123 , the zeros at the start of the number are just padding so that the rest of the digits fall into the right place.

Head First: And when aren't you just padding?
Zero: If I'm not at the start of the number, then I'm significant. Especially if I'm part of a measurement.

Head First: Why are measurements special?
Zero: Measurements are quoted to the same number of significant digits as your measuring device. So if your ruler's in mm and you measure something 5 mm long, then you write $5 \mathrm{~mm} . .$.

Head First: ... but there's no zero there ...
Zero: ... and if your ruler was marked off in tenths of a mm, you'd write 5.0 mm .

Headfirst: But why write the extra zero at the end when it's just the same thing? It's still 5 mm long!

Zero: Because you've measured it to a tenth of a millimeter this time. So you need to have a figure in there to say how many tenths there are. The number of tenths is highly significant!

Head First: But there weren't any tenths! So 5 mm and 5.0 mm are just the same number, aren't they?

Zero: But they don't have the same meaning.
Measurements have meaning! If it has a decimal point, then the last figure of the measurement tells you about the size of the error. So the last figure is always significant - even if it's a zero!

Head First: And if there's no decimal point, say in a number like 1000?!

Zero: Then it's ambiguous - you don't know exactly where it was rounded. Was the 1000 originally 501 rounded to the nearest thousand (1 sd), or 1000.1 rounded to the nearest unit (4 sd)? That's why you should always mention the number of sd when you make a measurement or give an answer.

Head First: Well, thank you, Zero, for coming in today and explaining what you do.

> Measurements have MEANING! Zeros are significant when they show you the error on a measurement.

Units
Reference standards for measurements. For example, meters for distance and seconds for time.

Check the Size, Units, Calculations, and Kontext of your answers to see if they make sense.

Your Physics Toolbox

> You've got Chapter 2 under your belt, and you've added some terminology and answer-checking skills to your tool box.

Units

A number needs to have units for it to mean something.
You're only allowed to add things together if they have the same units.

Errors

Any measurement you make has an error associated with it that reflects the uncertainly in the measurement.
Don't worry - they're not called errors because you did something wrong!

Significant digits

Any time your calculator gives you an answer, you'll need to round it.
Round your answer to the same number of significant digits as the least precise number you were given to work with.
(Usually this will be 3 significant digits.)

Converting units

To convert an answer from one unit to another you need to multiply it by a conversion factor. This is a fraction where the top and bottom are both equal sizes - but are expressed in different units.
Arrange things so that the units you don't want divide out when you multiply your answer by the conversion factor.
Also, think about whether you expect the number part of your converted answer to be bigger or smaller than what you currently have.

Does it SUCK?

Memory aid to see if your answer makes sense.
Size - How big did you expect your answer to be?
Units - Does your answer have the correct units?
Calculations - Did you do the math right?
'K'ontext - What are you trying to do - and is that what you actually did?

3 scientific notation, area, and volume

*

All numbers great and small *

In the real world, you have to deal with all kinds of numbers, not just the ones that are easier to work with. In this chapter, you'll be taking control of unwieldy numbers using scientific notation and discovering why rounding a large number doesn't mean having to write a zillion zeros at the end. You'll also use your new superpowers to deal with units of area and volume - which is where scientific notation will save you lots of grief (and time) in the future!

A messy college dorm room

Well, actually a particularly filthy college dorm room - Matt and Kyle probably wouldn't know one end of a vacuum cleaner from the other,

Head First U Department of Dorm Inspection

 Your dorm room is becoming hazardous to your health, and this state of affairs must be dealt with. We've detected a single specimen of a bug that doubles in number every twenty minutes.

If the bugs grow to occupy more than $6 \times 10^{-5} \mathrm{~m}^{3}$, they'll take over your room, and you will need to find a new place to live while we fumigate your living area.

Sincerely,
Dorm Inspection Team

So how long before things go really bad?

Kyle: ... hmmm, I'm not sure - my drawing's getting messy!
Matt: Yeah, the drawing will take forever. There's gotta be a math way to figure out how many bugs there'll be after 12 hours.

Kyle: Yeah, OK.
Matt: Hmmm. I can't think of an equation for "the bugs double every 20 minutes," but we could just make a table to keep track of things and keep on doubling until 12 hours are up. Then we'll know how many bugs there'll be by the morning.

Kyle: I think that'll work, but there's still that funny phrase in the note, "If the bugs grow to occupy more than $6 \times 10^{-5} \mathrm{~m}^{3}$." I don't know what that is, but it sure ain't a number of bugs.

Matt: Why don't we worry about that later, once we know how many bugs there'll be...

Sharpen your pencil

You start off with I bug. After 20 minutes, it's doubled once, and there are 2 bugs.

Number of doublings	Elapsed time	Number of bugs
1	20 min	2
2	40 min	4
3	1 h	8
4	1 h 20 min	16
5	1 h 40 min	32
6	2 h	64
7	2 h 20 min	128
8	2 h 40 min	256
9	3 h	512
10	3 h 20 min	1024
11	3 h 40 min	2048
12	4 h	4096
13	4 h 20 min	8192
14	4 h 40 min	16384
15	5 h	32768
16	5 h 20 min	65536
17	5 h 40 min	131072
6	6 h	262144
18		
16		

There are a lot of doublings in 12 hours, so we've given you space to continue the table.

Power notation helps you multiply by the same number over and over

If you want to multiply by the same number several times over, you can write it down using power notation. This means that $2 \times 2 \times 2 \times 2 \times 2$ becomes 2^{5}, as there are five instances of 2 . When you say 2^{5} out loud, you say "two to the power of five" or sometimes just "two to the five." The five part is called the index.

Your calculator's power button gives you superpowers

How many times you're multiplying by it. This is called the INDEX.

You can use the power button on your calculator to multiply by the same number lots of times without having to type it all out. Usually, you type in the number you want to multiply by, then press the power button, then type the number of times you want to multiply by it.

Watch out though - different calculators have different things written on the power button! Make sure you know what yours looks like and how it works before you try to use it!

If your calculator doesn't have a power button, then you'll need to get a scientific calculator. It'll help you out in the long run as you move onto solving more sophisticated and complicated physics problems.

Power

notation makes multiplying by the same number over and over less prone to mistakes.

Your calculator displays big numbers using scientific notation

Sometimes, an answer has too many digits to fit on your calculator's screen. When that happens, your calculator displays it using scientific notation. Scientific notation is an efficient and shorter way of writing very long numbers.

The value of 2^{36} has 11 digits in it, but a calculator doesn't have enough space to display all of the digits. So instead, they've rounded the answer to the number of significant digits that they can fit on the screen.

The first part of the number on the screen is for the part that

In math, scientific notation is often called standard form.

> Answers written in scientific notation have two parts. starts 6.87...

The second part of the number tells you the size of the first part.
Numbers written in scientific notation have two parts.
The first part is a number with one significant digit before the decimal point and the rest of the number after the decimal point.
The second part tells you the number of 10's you have to multiply the first part by to make your answer the correct size.
$6.871947674 \times 10^{10}$

The first calculator's given an answer of $6.871947674 \times 10^{10}$. It's given you 10 significant digits, and the number is the same as writing 6.871947674×10 $\times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times$ 10×10, which is 68719476740 .

Scientific notation uses powers of 10 to write down long numbers

So you don't have to write them out the long way if they have 28 digits or something!

You calculator's given you the answer $2^{36}=6.871947674 \times 10^{10}$. You know that to get this into the form you're used to, you need to multiply the first part of the number by ten groups of 10 .

Each time you multiply by 10 , the number's digits shift along one place to the left so that each digit is worth 10 times more than it was before.

But it's quite hard for you to draw that, so practically speaking, you can get to the same place by hopping the decimal point the correct number of times to the right. Then the number becomes 68719476740.

> You can work out where the number's digits should lie by 'hopping' the decimal point.

Each time you multiply by 10 , the decimal point hops along one place to make the number bigger.

You should round your answers to three significant digits, like you did in Chapter 2.

Scientific notation helps you round your answers.

If you have to round a long number to 3 significant digits (sd) as a final answer, then the start is OK, but putting in the right number of zeros is a real pain.
It's a lot easier in scientific notation, as the tens are spelled out at the end of the number. This lets you rewrite $6.871947674 \times 10^{10}$ as 6.87×10^{10} without hopping the decimal point along.

Does writing our answers with scientific notation really help us keep track of the digits?

To convert a normallywritten number into scientific notation, count how many hops until only one digit is left in front of the decimal point, and multiply the number by that many 10 's.

Strictly speaking, it's the digits that move, not the decimal point, but that's much harder for you to draw!

there are no

Dumb Questions

Q:

- I thought what you're calling 'scientific notation' is actually called 'standard form.' What gives?

A:
They're both the same thing. Scientists use the term 'scientific notation' and mathematicians 'standard form.'

Q: Why should I bother with scientific notation when I'm really careful about how I type numbers into my calculator?

A:: Your calculator screen might not be big enough to display an answer that's either really big or really small. So you need to understand scientific notation, or it wont make sense.

Q:But I have a super duper flashy calculator that'll display lots and lots of digits on its humongous screen. So if I'm careful, why would I ever need scientific notation?

A:You could be given a number in scientific notation to work with - in an exam question or when you look something up to find out how big it is.

Q:How big are we talking about?

A\therefore Well, the earth's mass is 5.97×10^{24} kilograms. That's a very big number with a lot of zeros at the end if you write it out longhand.

Q:- OK, I can see why I might not be happy handling over 20 zeros at the end. But why would I ever want to write an answer l've worked out myself in scientific notation?

A:: If you're rounding your answer to 3 significant digits (like you'll do in your exam), then it's much easier to use scientific notation than it is to scrawl a whole lot of zeros across your page.

You can just take the number your calculator gives you, for example, $6.871947674 \times 10^{10}$, and write 6.87×1010 without having to do anything else to it?

Q: so are you saying that scientific notation isn't just there because my calculator's screen isn't big enough - it helps me as well?

A: Yep, scientific notation helps you to write and round very long numbers in a much shorter form. So it's not just about calculators - it's about making your life easier.

Q:So which came first - small calculator screens or scientific notation.

A:: Scientific notation came first by several hundred years!
Q: I have one more question. Are numbers in scientific notation always written with one digit in front of the decimal point? Couldn't you equally write 6.87×10^{10} as 687×10^{8} ?

A:: Conventionally, they're written with one digit in front of the decimal point. Your brain will soon get used to estimating the size of the number from the tens part, so sticking to the convention is best.

> Scientific notation helps you to handle very long numbers that would otherwise have many digits, even when you've round them.

So the weird number in the eviction notice is in scientific notation. But it's 6×10^{-5}. How do you multiply by a negative number of tens???

Scientific notation helps you with small numbers as well

The number in the Dorm Inspection note is 6×10^{-5}. It's scientific notation alright - but there's a negative power of 10 . This is the conventional way of showing you that you should divide by the 10's instead of multiplying.
Every time you divide by 10 , the number's digits shift along one place to the right, so each digit is worth 10 times less than it was before.
It's difficult for you to draw that, but practically speaking, you can get to the same place if you hop the decimal point the correct number of times to the left. So 6×10^{-5} works out as 0.00006 .

Another way of showing this is as a fraction, by writing $\frac{6}{10^{5}}$. This makes it more obvious that you're dividing by all the 10 's, as they appear on the bottom of a fraction.
6×10^{-5} and $\frac{6}{10^{5}}$ both mean: $\frac{6}{10 \times 10 \times 10 \times 10 \times 10}$
(You're dividing
by 10 five times.
If the 10 's are on the bottom of the fraction, you're obviously dividing by them, so you don't need to put in the minus sign.

The key thing with scientific notation is to rewrite the number with 0 NE digit before the decimal point, then multiply or divide by the correct number of 10 's.

In this exercise, spot the pattern behind the convention of using a negative index $\left(6 \times 10^{-5}\right)$ to represent dividing by a series of 10^{\prime} s.

Write down any patterns you spot.
\qquad
\qquad

Is there anything in your table that looks a bit unusual?
\qquad
\qquad

Kyle: But 6×10^{-5} what?? It can't be 6×10^{-5} bugs - the index is negative so that's much less than the 1 bug we started with!

Matt: There's that funny m^{3} thing after the number though. It kinda looks like it might be meters - but what's the little 3 for? Typo for MP3?

Kyle: I don't see where music comes into it. Hey, maybe that's scientific notation as well. Could m^{3} be meters \times meters \times meters?

Matt: But when would you ever want to multiply units together?
Kyle: Hmm, good point. But the meters \times meters \times meters thing reminds me of doing stuff with length \times width \times height years ago. That's three lengths multiplied by each other.

Matt: And that would make a volume! Cubic meters!
Kyle: Like how area's measured in square meters? m^{2} ?
Matt: Yeah. So the note's saying that if the bugs grow to occupy more than that volume, we wind up in trouble. But how do we find out the volume that all the bugs take up? We know how many of them there
 are after 12 hours, but that doesn't say how big they are all together.
Kyle: I wonder if there's anywhere we can look up the volume of one bug? Then we can multiply that by the number of bugs to get the total volume.

Matt: Sweet!

You can write units in scientific notation,

 e.g. area $\left(\mathrm{m}^{2}\right)$ Square meters or volume $\left(\mathrm{m}^{3}\right)$ 。Cubic meters

You'll often need to work with area or volume

The guys have decided that if they can find out the volume of one bug, they can multiply that by the total number of bugs to get the total volume.

Area is the amount of space something occupies in two dimensions. In SI units, it's measured in m^{2} (if you say it out loud, this is "meters squared" or "square meters").

I always thought you use acres for area and gallons or liters for volume. Why should I use m^{2} and m^{3} instead?

Area and volume units based on length help you visualize how big things are.

There are lots of other units that people can use for areas and volumes. But in your physics course, it makes the most sense to use units based on length.

For a start, this makes it easier to visualize how big an area or volume is. If you can imagine a meter, then you can also imagine a square meter or cubic meter. And if you know a football field is approximately 90 m long and 50 m wide, then you have a good idea of what $90 \times 50=4500 \mathrm{~m}^{2}$ looks like!

Also, in physics you'll sometimes need to work out the area or volume of something when you know how long it is in different directions. It's far easier to use volume units based on the lengths you already know than it is to introduce even more conversion factors.

Look up facts in a book (or table of information)

If you're taking a test, you're not completely on your own. In both the multiple choice and the free response sections of the AP Physics B exam, you'll get a table of information.

The stuff in the table is there to prevent you from having to memorize lots of values (like the mass of an electron) that are vital for certain parts of a question, but don't help you understand the physics.

The table of information doesn't have anything in it about bugs, but Matt and Kyle find something that does. The Big Book of Bugs says that the particular strain of bug the Inspector found in their room is about $1 \mu \mathrm{~m}$ long by $1 \mu \mathrm{~m}$ wide by $1 \mu \mathrm{~m}$ high.
The only problem is, what on earth is a $\mu \mathrm{m}$?

You'll have a table of information in your exam. There's one a bit like it in Appendix B, but it's best for you to go to the AP Central website to download and practice with the one you'll actually have, so it's familiar.

Prefixes help with numbers outside your comfort zone

Back in Chapter 2, you learned that you can put prefixes in front of units to show how big or small the units are. A kilometer is 1000 meters (10^{3} meters), a millimeter is 0.001 of a meter $\left(10^{-3}\right.$ meters $)$, and so forth.

There are several other SI unit prefixes. The μ prefix in the bug book is the Greek letter 'mu,' and is short for 'micro.' One $\mu \mathrm{m}$ is one millionth of a meter (10^{-6} meters).

That's not exactly the size of number you're used to working with from day to day! Your brain is happier with numbers closer to 1 , so it feels better to say that the bug is $1 \mu \mathrm{~m}$ long instead of 0.000001 m long (or $10^{-6} \mathrm{~m}$ long).

You usually get a new prefix when something becomes 1000 times bigger, at $10^{3}, 10^{6}, 10^{9}$, etc. The exception is 'centi,' which means 10^{-2} and is commonly used in the context of centimeters.

These are the SI prefixes you'll come across most often. (There are more of them, but there's no point in knowing what they all are if you'll never use them).

there are no
 Dumb Questions

Q:So why bother with scientific notation at all when you can just incorporate all the 10's into the prefix, and say $\mu \mathrm{m}$ instead of $1 \times 10^{-6} \mathrm{~m}$?
A: There are equations you'll come across later on that only work when you're measuring distance in meters, mass in kilograms, and so on. So you end up converting everything into meters (usually using scientific notation) anyway.

Scientific notation also makes calculations easier - as you'll see in a moment ...

Q:
So why bother with $\mu \mathrm{m}$ and all those prefixes then?
A: - Mainly ease of use. In everyday life, it's far easier to talk about " 1 millimeter" or "10 kilometers" than it is to talk about " 1×10^{-3} meters" or " 1×10^{4} meters."
 But why is that easier?

A:People usually have a better feel for numbers that are similar to the numbers of objects they can count.

QSo that's why you get things like 'nanotechnology' - it's easier to talk about numbers that are close to everyday counting numbers than it is to say 'thousand-millionth technology'! A: Yes. When speaking out loud, a physicist will prefer to say that something is 100 nm long rather than 0.0000001 m or $1 \times 10^{-7} \mathrm{~m}$. Once you get used to how big a nanometer is, your brain is happy to use it as a starting point.

0
Kyle: Yeah, a millionth of a meter. That sure is tiny - I can't even picture it in my head!

Matt: So if one bug is so small, maybe we can get away with cleaning even later! There's a game on tomorrow - If we figure out how many bugs there will be after 16 hours, we could maybe catch that before cleaning.
Kyle: 16 hours is $16 \times 3=48$ groups of 20 minutes, so they double in number 48 times. My calculator says that $2^{48}=2.81 \times 10^{14}$ (to 3 significant digits). So there'd be 2.81×10^{14} bugs.

Matt: And after 12 hours, there were 6.87×10^{10} bugs. So what we really want to do is work out what volume these bugs take up and compare it with the volume in the Dorm Inspector's note.

Kyle: That's pretty simple. One bug $=1 \mu \mathrm{~m}^{3}$, right? So 6.87×10^{10} bugs is $6.87 \times 10^{10} \mu \mathrm{~m}^{3}$, and 2.81×10^{14} bugs is $2.81 \times 10^{14} \mu \mathrm{~m}^{3}$.

Matt: Uhhh, not so fast. The volume in the note is measured in m^{3}, not $\mu \mathrm{m}^{3}$. So we have to convert the units of our answers to m^{3} to be able to compare them.

Kyle: Ah, good point. It looks like we're gonna have to do some calculations using numbers in scientific notation, keeping in mind that 1 m is the same as $1 \times 10^{6} \mu \mathrm{~m}$. I've no idea how to do that.

Matt: Me neither.

How might scientific notation help you to multiply a very large number and a very small number together?

Scientific notation helps you to do calculations with large and small numbers

Writing down numbers in scientific notation really helps you do calculations that involve big numbers, small numbers, or both.

Suppose someone asks you to work out the mass of all the atoms in a balloon. They tell you that there are 6×10^{22} atoms in the balloon, and each atom has a mass of $6.65 \times 10^{-27} \mathrm{~kg}$.

If you don't use scientific notation, you end up with a horrendous bout of calculator-bashing:

The mass of all the atoms is the number of atoms times the mass of one atom :
Mass of all atoms $=\mathbf{6 0 \times \mathbf { 0 . 0 6 6 5 } \mathbf { ~ k g }}$
 $6.65 \times 10^{-27} \mathrm{~kg}$.

This is a horriblelooking calculation!

$5+(-3)$ is the same as 5-3.

Here you're multiplying by five lots of 10 , and then multiplying by another three lots of 10 . So you're multiplying by eight lots of 10 in total, or 10^{8}.

,

 by eight lot 10 in

Here you're multiplying by five lots of 10 , and dividing by three lots of 10 . This is the same as multiplying by two lots of 10 in total, or 10^{2}.

I guess we should keep the numbers in scientific

Powers of $\mathbf{1 0}$ make calculations easier.

If you're multiplying together two numbers written in

If there's a division sign in your calculation, it's easiest to rewrite it as a multiplication.
You can rewrite this as $10^{5} \times 10^{3}=10^{8}$.

You can rewrite this as $10^{5} \times 10^{-3}=10^{2}$.

 powers of 10 with some calculations. Your job is to take numbers from the pool and place them into the boxes in these statements. You may not use the same number more than once, and you won't need to use all the numbers.

$$
10^{4} \times 10^{-16}=\cdots \ldots
$$

 you work out the answer.

The vast majority of people have nose.
One divided by a million $=\ldots$

10000 is the same as

\square The two biggest numbers in the pool are and \qquad

A millionaire is likely to have at least $\$$ dollars in the bank.
There are meters in a kilometer.

Pool Puzzle - Pawers of 10 - SoLution

 powers of 10 with some calculations. Your job is to take numbers from the pool and place them into the boxes in these statements. You may not use the same number more than once, and you won't need to use all the numbers.

$$
10^{4} \times 10^{-16}=10^{-12}
$$

$\frac{1}{10^{-24}}$ is the same as 10^{24}.
$\rightarrow\left(\frac{10^{-12}}{10^{-24}}=10^{12}\right.$
This is the same as $10^{-12} \times 10^{24}$.

The vast majority of people have 10^{0} nose. One divided by a million $=10^{-6}$

The two biggest numbers in the pool are 10^{23} and 10^{19}.
10000 is the same as 10^{4}

A millionaire is likely to have at least $\$ 10^{6}$ dollars in the bank.
There are 10^{3} meters in a kilometer.
This is the same as
$10^{14} \times 10^{3} \times 10^{-6} \times 10^{7}$.
$\left(\frac{10^{14}}{10^{-3}} \times 10^{-6} \times 10^{7}=10^{18}\right.$

$$
0.00001 \text { is the same as } 10 .
$$

Once you can handle powers of 10, you can do calculations using scientific notation.

A number written in scientific notation has two parts. The first part has one digit before the decimal point, and the second part is a power of 10 .

Rewrite the order of the parts in the multiplication so that the powers of 10 are all together

If you're multiplying together two numbers written in scientific notation, it's easiest to deal with the decimal point parts and powers of 10 parts separately before putting them back together.

So if you're doing $2 \times 10^{3} \times 4 \times 10^{2}$, you can change the order of the things you're multiplying together:
$2 \times 4 \times 10^{3} \times 10^{2}=8 \times 10^{5}$, which is the correct answer! $-2 \times 4 \times \frac{10^{3} \times 10^{2}}{7}=$ notation have the bit at the start as well as the power of 10 at the end!

Spend some time going through the balloon multiplication step by step before going back to the bug problem.
a. There are 6×10^{22} helium atoms in the balloon. 1 helium atom has a mass of $6.65 \times 10^{-27} \mathrm{~kg}$. Write down the multiplication you'd do to find the mass of all the atoms in the balloon.
b. You are allowed to multiply numbers together in any order. Change the order of the things you're multiplying together so that the powers of 10 are next to each other.
c. Multiply together the two 'decimal point' parts. Then multiply together the two 'powers of 10 ' parts. This should give you an answer with one decimal point part and one power of 10 part.

Spend some time going through the balloon multiplication step by step before going back to the bug problem.
Exercise Solution
a. There are 6×10^{22} helium atoms in the balloon. 1 helium atom has a mass of $6.65 \times 10^{-27} \mathrm{~kg}$. Write down the multiplication you'd do to find the mass of all the atoms in the balloon.

$$
\text { Mass of all atoms }=6 \times 10^{22} \times 6.65 \times 10^{-27} \mathrm{~kg}
$$

b. You are allowed to multiply numbers together in any order. Change the order of the things you're multiplying together so that the powers of 10 are next to each other.

$$
\text { Mass of all atoms }=6 \times 6.65 \times 10^{22} \times 10^{-27} \mathrm{~kg}
$$

c. Multiply together the two 'decimal point' parts. Then multiply together the two 'powers of 10 ' parts. This should give you an answer with one decimal point part and one power of 10 part.

$$
\text { Mass of all atoms }=39.9 \times 10^{-5} \mathrm{~kg}
$$

d. Rewrite your answer from part c. so that the decimal point part has one digit in front of the decimal point. (You'll need to adjust the power of 10 part.)

$$
\text { Mass of all atoms }=3.99 \times 10^{-4} \mathrm{~kg}
$$

Can you run that last part by me again? How do I work out what to do with the 10's part of the answer once I've put one digit in front of the decimal point?

Your answer needs to stay the same size.

If you wind up with the answer 39.9×10^{-5}, you need to rewrite it in scientific notation as a number that has a part with one digit in front of the decimal point and a power of 10 part.

You need to divide the 39.9 part of the number by 10 to get 3.99. But the number must remain the same size- so you need to multiply the second part by 10 .

there are no
 Dumb Questions

Q:My calculator has a button that lets me input numbers in scientific notation. Why can't I just use that?

A:Sometimes you don't get to use a calculator, like in the multiple choice part of the AP exam!

Plus doing the calculation like this helps you to see the size of answer you're expecting, and you're more likely to spot silly mistakes when you ask yourself if your answer SUCKs.

Q:But when will I ever see numbers like this in my exam?

A:: There are lots of very big or very small numbers in physics - the size of an electron, the mass of the earth, etc.

> If you're doing a calculation with numbers written in scientific notation, you should separate out the powers of 10 to add the indices before recombining them with the rest of the numbers.

The guys have it all worked out

Matt and Kyle have had a go at working out the volume of the they do... bugs using scientific notation. But have they done it correctly?

Sharpen your pencil

Matt and Kyle have had a go at working out the volume of bugs in m^{3} that there'll be after 12 and 16 hours. Your job is to see if you agree with their calculations, and decide whether their final answer SUCKs (Size, Units, Calculations, 'K'ontext).

Look at the Size of their answer - if it feels wrong, then look to see if there's a mistake with the Units or Calculations.

There are $10^{6} \mu \mathrm{~m}$ in 1 m .
We'll use this as the conversion factor for the volume.

After 12 hours:

$$
\begin{aligned}
\text { Volume of bugs } & =6.87 \times 10^{10} \mathrm{\mu m}^{3} \\
& =6.87 \times 10^{10} \mu^{3} \times \frac{1 \mathrm{~m}^{3}}{10^{6} \mathrm{\mu m}^{3}} \\
& =6.87 \times 10^{10} \times 10^{-6} \mathrm{~m}^{3} \\
& =6.87 \times 10^{4} \mathrm{~m}^{3}
\end{aligned}
$$

After 16 hours:

$$
\begin{aligned}
\text { Volume of bugs } & =2.81 \times 10^{14} \mathrm{\mu m}^{3} \\
& =2.81 \times 10^{14} \mathrm{~mm}^{3} \times \frac{1 \mathrm{~m}^{3}}{10^{6} \mathrm{\mu m}^{8}} \\
& =2.81 \times 10^{14} \times 10^{-6} \mathrm{~m}^{3} \\
& =2.81 \times 10^{8} \mathrm{~m}^{3}
\end{aligned}
$$

Sharpen your pencil Solution

Matt and Kyle have had a go at working out the volume of bugs in m^{3} that there'll be after 12 and 16 hours. Your job is to see if you agree with their calculations, and decide whether their final answer SUCKs (Size, Units, Calculations, 'K'ontext).

Look at the Size of their answer - if it feels wrong, then look to see if there's a mistake with the Units or Calculations.

There are $10^{6} \mu \mathrm{~m}$ in 1 m .
We'll use this as the conversion factor for the volume.

After 12 hours:
Volume of bugs $=6.87 \times 10^{10} \mathrm{~mm}^{3}$
These answers are totally the wrong SIZE! $\quad=6.87 \times 10^{10} \mathrm{ym}^{3} \quad \frac{1 \mathrm{~m}^{3}}{10^{6} \mathrm{my}^{3}}$ $2.81 \times 10^{8} \mathrm{~m}^{3}$ is the
$=6.87 \times 10^{10} \times 10^{-6} \mathrm{~m}^{3}$ giant football stadiums!

$$
=6.87 \times 10^{10} \mathrm{\mu m}^{3} \quad \frac{1 \mathrm{~m}^{3}}{10^{6} \mathrm{my}^{3}}
$$ same volume as 2000

This is the problem! There are $10^{b} \mu \mathrm{~m}$ in 1 m , but that's LENGTH, not VOLUME. You can't use it as a conversion factor for volume.

Volume is length x length x length and has units of m^{3}, not m. Converting between μm^{3} and m^{3} is different from converting between $\mu \mathrm{m}$ and m .

200,000,000 meters cubed bugs after only 16 hours is totally the wrong size of answer!

The size of Matt and Kyle's answer is waaay off - if you spotted that, well done! It just doesn't make sense to say that the bugs will occupy a volume of two hundred million cubic meters after only 16 hours - especially if you can visualize the size of just one cubic meter!

Can you imagine two hundred

 million cubic meters of bugs? Think of an enormous sea of bugs....eww.

Be careful converting units of area or volume

Although there are $1 \times 10^{6} \mu \mathrm{~m}$ in a m , there aren't $1 \times 10^{6} \mu^{3}$ in a m^{3}. This is difficult to see because the numbers are so big - and it's what the guys missed. They've ended up saying that the bugs will occupy a volume of two hundred million cubic meters after only 16 hours, which must be nonsense!

A $\mu \mathrm{m}$ is so small; it's easier to visualize how this happened using mm and cm to measure area and volume.

Length is one-dimensional.

There are 10 mm in 1 cm .

Area is two-dimensional, ie., length \times width.
So there are $10 \times 10=100 \mathrm{~mm}^{2}$ in $1 \mathrm{~cm}^{2}$.
Or in scientific notation: $10^{1} \times 10^{1}=10^{2} \mathrm{~mm}^{2}$ in $1 \mathrm{~cm}^{2}$.
 as length.

Volume is three-dimensional, i.e., length \times width \times height.
So there are $10 \times 10 \times 10=1000 \mathrm{~mm}^{3}$ in $1 \mathrm{~cm}^{3}$.
Or in scientific notation: $10^{1} \times 10^{1} \times 10^{1}=10^{3} \mathrm{~mm}^{3}$ in $1 \mathrm{~cm}^{3}$.

Sharpen your pencil

The bugs occupy $6.87 \times 10^{10} \mu \mathrm{~m}^{3}$ after 12 h and $2.81 \times 10^{14} \mu \mathrm{~m}^{3}$ after 16 h . How many m^{3} is that, and how does this compare with the $6 \times 10^{-5} \mathrm{~m}^{3}$ mentioned in the note? (There are $10^{6} \mu \mathrm{~m}$ in 1 m .)

Solution

The bugs occupy $6.87 \times 10^{10} \mu \mathrm{~m}^{3}$ after 12 h and $2.81 \times 10^{14} \mu \mathrm{~m}^{3}$ after 16 h . How many m^{3} is that, and how does this compare with the $6 \times 10^{-5} \mathrm{~m}^{3}$ mentioned in the note? (There are $10^{6} \mu \mathrm{~m}$ in 1 m .)

After 12 hours:

$$
\begin{aligned}
\text { Volume of bugs } & =6.87 \times 10^{10} \mathrm{~mm}^{3} \\
& =6.87 \times 10^{10} \mathrm{~mm}^{3} \times \frac{1 \mathrm{~m}^{3}}{10^{18} \mathrm{\mu m}^{3}} \\
& =6.87 \times 10^{10} \times 10^{-18} \mathrm{~m}^{3} \\
& =6.87 \times 10^{-8} \mathrm{~m}^{3}
\end{aligned}
$$

This is less than $6 \times 10^{-5} \mathrm{~m}^{3}$.

There are $10^{6} \mu \mathrm{~m}$ in 1 m . Volume is three-dimensional.
So there are $10^{6} \times 10^{6} \times 10^{6}=10^{18} \mathrm{~mm}^{3}$ in $1 \mathrm{~m}^{3}$.
After 16 hours:

$$
\begin{aligned}
\text { Volume of bugs } & =2.81 \times 10^{14} \mu \mathrm{~m}^{3} \\
& =2.81 \times 10^{14} \mathrm{~mm}^{3} \times \frac{1 \mathrm{~m}^{3}}{10^{18} \mathrm{~mm}^{3}} \\
& =2.81 \times 10^{14} \times 10^{-18} \mathrm{~m}^{3} \\
& =2.81 \times 10^{-4} \mathrm{~m}^{3}
\end{aligned}
$$

This is more than $6 \times 10^{-5} \mathrm{~m}^{3}$.

So the bugs won't take over ... unless the guys sleep in!

You just worked out that if the guys remember to set their alarms for 12 hours from now, the bugs won't reach the tipping point and get the guys evicted.
But if the guys try waiting 16 hours to catch the football game, the Dorm Inspector will turf them out. Unfortunately...

Question Clinic: The "Converting units of area or volume" Question

These are all LENGTHS,
4. A treasure chest is 800 mm long, 400 mm wide, and 500 mm high.
a. What is its volume in m^{3} ?
b. How many gold blocks measuring 20 cm by 10 cm by 5 cm could fit in the chest?
Here's yet another way of measuring length (cm) that needs to be converted into a volume.

It's often easiest to convert the lengths to m first and work out the volume in m^{3}. (Though you could also work out the area in Cm^{3} and convert that to m^{3} at the end.)

But you're asked for a VOLUME in m^{3}, not mm^{3}. \checkmark

It's probably best to work through the whole question in m^{3}, as this is the unit you're asked to give your answers in.

With volume questions, you sometimes have to think of how many blocks you could stack in each direction before you reach the side of the container. This bit lets you know that you don't need to allow for that.

Tonight's talk: A normal number and one written in scientific notation go head-to-head. Who will be the last one standing when the revolution comes.

Normal number:

Well, well, Mr. Obscurity. Lovely to meet you at last!

You hide for decades while I do all the counting, shopping, algebra, and so on. Then, suddenly you show up and expect to take center stage. It's just plain rude!

Yeah? Show me one thing you can do that I can't!

No way! " 50 billion dollars" gives you a much better idea of size than these silly little numbers by the ten.

It's not what people are used to! They've been doing it my way all their lives, and you've totally failed to show that your way is better.

Um, let me look up my table of information. That'd be 0.00000000000000000000000000167 kilograms.

But they can still count up my zeros to get the size.

Um, OK. I guess you are the master of showing big or small numbers. So ... do you plan to take over completely?

Scientific notation number:

Less of that! I know most people go $16+$ years before they meet me, but I'm well worth the wait!

You can still do all the stuff you've always done - I'm not trying to steal your thunder. But the fact is that I am naturally better at some things.

OK, what about writing out Bill Gates' fortune nicely? 5×10^{10} dollars.

Well, my way is really obviously " 5 " with ten zeros after it - what's so difficult about that?

Well then, Mister "They're used to me," how would you talk about the mass of a proton?

When have people ever seen silly numbers like that? They're not used to them at all! They're better off writing it my way -1.67×10^{-27} kilograms.

Well, yeah, but who's going to bother with that?

Normal number

I told you they like me more!

Yeah, right. Every calculator manufacturer has a different way to input you, especially your 10 to the power of negative thingamajiggers.

Sorry? You can multiply by adding? Sounds a bit suspicious to a purist like me.

So you're saying that the first bit of you is easy to deal with (but only because people have practiced with me), and the second bit is easy because they're used to adding sums (again, because of me)?

Scientific notation number:

Not completely. People still prefer doing things your way if they can! They've even invented a whole load of units so they don't have to go around saying "blah times ten to the power of whatever" all the time. Like nanometers, kilograms, and such.

Actually, all I've said is that people like numbers they feel comfortable with. But when it comes to doing calculations with the numbers, that's when I shine.

Ah, but the humans don't have to do that if they're multiplying or dividing numbers like me. They only type the first bit into their calculators, the 1.67 or whatever. Then they do the tens part separately, on paper (which is just simple adding).

Yes, if you're multiplying lots of tens parts together, all you need to do is add the indices. $10^{2} \times 10^{3}=$ 10^{5} can be broken down into " $10^{2}=10 \times 10^{\prime}$ " and " $10^{3}=10 \times 10 \times 10$." Together, they make " 10×10 $\times 10 \times 10 \times 10$." Five lots of 10 is 10^{5}.

I suppose you could put it like that. Maybe we need each other more than we realized in the beginning.

The giant who came for breakfast

Once upon a time, long long ago, a refugee from the land of the giants came to the king's palace. He was hungry. Now, when I say hungry, I don't just mean the kind of hunger you feel in between meals. The giant was twice as tall as a normal person...and starving.

The king sighed with relief when he realized that the giant wasn't about

Five Minute Mystery

 to gobble him up, but instead was far more interested in a hearty meal of sausage, bacon, and eggs."But if it's paltry food you bring, I'll eat the servants, then the king!" he concluded.
The smile froze on the king's lips, becoming the kind of grimace you might muster when face-to-face with a hungry giant who'd just threatened to turn you into a tasty snack.

The king gathered his advisers around him to ask them for advice (which advisers generally provide).
"Your highness," they began. "Since the giant is twice a tall as a normal person and perfectly in proportion, we should serve him twice as much breakfast...maybe with a couple of extra pieces of toast just in case."

Should the king listen, and agree to feed the giant twice as much as a normal person because he's twice as tall?

Scientific A method of representing long numbers using powers of 10. notation

Area Two-dimensional space.

Volume
Three-dimensional space.

Your Physics Toolbox
You've got Chapter 3 under your belt, and you've added some terminology and answer-checking skills to your toolbox.

> Multiplying powers of 10 by each other

Multiply together different powers of 10 by adding the indices.
For example, $10^{5} \times 10^{-2}=10^{3}$ because $5+(-2)=3$

Dividing powers of 10 by each other

If you're dividing by a power of 10 , it's easiest to rewrite this as a power of 10 you're multiplying by, then add the indices as before.
For example:

$$
\frac{10^{5}}{10^{2}}=10^{5} \times 10^{-2}=10^{3}
$$

Scientific notation

Scientific notation is a way of writing really long numbers using two parts multiplied together.

The first part is written as a number with one digit in front of the decimal point.
The second part is a power of 10 .
For example, $5 \times 10^{3}=5000$

Calculations using

 scientific notationIf you have to multiply together several numbers written in scientific notation, it's easiest to treat the powers of 10 separately before putting the number back together.

Power notation

Power notation is a way of showing that you're multiplying or dividing by the same number over and over again. For example, if you have 10^{6}, it means you're multiplying by 10 six times over. And if you're dividing by the same number several times, you can show this using a negative index, e.g. 10^{-7}.

The giant who came for breakfast

Should the king listen, and feed the giant twice as much because he's twice as tall as a normal person?

The king needs to make sure that the giant's stomach ends up full of food, so there's no room left in there for him or his advisors!

If the giant's twice as tall as a normal man and in proportion, then he's also twice as wide from side to side, and twice as deep from front to back.

So the giant's stomach is twice as high, twice as wide and twice as deep as a normal man's and is $2 \times 2 \times 2=8$ times larger -so the king should order eight breakfasts for the giant to be on the safe side.

4 equations and graphs

\& Learning the lingo

Communication is vital. You're already off to a good start in your journey to truly think like a physicist, but now you need to communicate your thoughts. In this chapter, you're going to take your first steps in two universal languages - graphs and equations - pictures you can use to speak a thousand words about experiments you do and the physics concepts you're learning. Seeing is believing.

The new version of the Break Neck Pizza website is nearly ready to go live ...

Break Neck Pizza already revolutionized pizza delivery through its patented "just in time" cooking process and its large fleet of delivery bicycles.

But now it's even better! The award-winning Break Neck website has just been upgraded to give each customer a delivery time for their order.

Iter you phone rumber:
Type wor odio in tere:
rour crober we pe dilvered ty
 $-$

1

Ontrem

but you need to work out how to give the customer their delivery time

You've been called in to figure out what time the website should quote each customer. The web programmers are happy to implement your solution, and you also have Alex, the top Break Neck delivery guy, on hand to help. He knows how long it takes him to get to some houses, but you'll need another way to work out the delivery time to new, unknown neighborhoods.

Alex, Break Neck's top delivery guy.

Write down everything you can think of that might affect the delivery time the website should give to a customer.

How fast Alex can cycle \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Write down everything you can think of that might affect the delivery time the website should give to a customer.

If you write the delivery time as an equation, you can see what's going on

The total delivery time is the time Alex spends cycling to the customer's house plus the cooking time for the pizza.

It takes a lot of words to describe this, and it's difficult to tell what's going on without reading the whole thing. This is why in physics, people use equations to describe how the world works.

You can use letters with subscripts as symbols to represent each of the times:
$t_{\text {toata }}$ for the total delivery time.

$t_{\text {cyc }}$ for Alex's cycling time.

Use ' t ' to show that a symbol represents a time, and use subscripts to indicate which time, e.g., $t_{\text {cook }}$.
$t_{\text {cook }}$ for the cooking time.
Then you can write down the equation $t_{\text {total }}=t_{\text {cyc }}+t_{\text {cook }}$. This says exactly the same thing as "The total delivery time is equal to the time Alex spends cycling to the customer's house plus the cooking time for the pizza." Except the equation lets you see that at a glance.

We're using italics here to represent variables. You don't have to do this when you're writing them down!

> Equations let you represent the real world symbolically.

Use variables to keep your equation general

An equation like $t_{\text {total }}=t_{\text {cyl }}+t_{\text {cook }}$ is general because it isn't tied to any particular values for the cycling or cooking times. This means you can use the same equation for any order. Any quantity represented by a letter rather than a number is called a variable. Here it's good for $t_{\text {total }}, t_{\text {cyc }}$, and $t_{\text {cook }}$ to be variables because their values will vary for each customer.

there are no Dumb Questions

The order you add in doesn't matter. You could also write $t_{\text {total }}=t_{\text {cook }}+t_{\text {cyl }}$

QWhy bother with an equation when a description will do just as well?

A:: Descriptions are good because if you can explain something in words, you know you've got it. But equations are also good because they let you be short and sweet when you're explaining things.
Q: But the equations use letters in them. Surely that makes things harder because you have to explain what each of the letters means before anyone else can understand what the equation says.
A: That's true - but once you know what the letters represent, they're much quicker to write down and take in than a load of words.

Q: . But why use letters in the equation at all? Surely it would be easier to get the delivery time if we write numbers in there from the start?
A: : You're right, that would work - but only for one particular house! You'd need to start over again for each new delivery.

Q:Can't I use different letters to represent each thing instead of using t all the time?
A: Each of the variables in your equation is a time. It's conventional to use the letter t to represent a time, and use subscripts to indicate which time that variable represents.

Q: - But why use subscripts rather than using two letters next to each other? Surely using initials like 'ddt' for delivery time would be clearer?
A: : One reason is that in physics and math, you indicate that you're multiplying two variables together by writing them next to each other. So you write $a \times b$ as $a b$. The second is that ' $d t$ ' is already reserved for something else (which you'll come across later on in the book).

Q: Oh yeah, I kinda remember that from math. Why is it useful?!
A: It helps you to see the building blocks of your equation more easily. We're just getting to that ...

An equation uses symbols to show you that two things are equal to each other.

An equation must have an equal sign!

If it doesn't, it's
 not an EQUAtion!

In an equation, each of the blocks you add together or subtract from each other is called a term. A term can be a number, a single variable, or several numbers and variables multiplied or divided by each other.

A TERM is one of the building blocks that you add or subtract.

You can break down equations by thinking about them one term at a time. If a term is more complicated than a single variable, you need to do all the calculations (multiplying, dividing, and so forth) within a term before you add it to or subtract it from other terms. So that you can spot terms easily, it's usual to use a shorthand for multiplication, like $b z$ instead of $b \times z$ since this groups together all the variables in each term.

You need to work out Alex's cycling time

Your equation for the delivery time is $t_{\text {total }}=t_{\text {cyc }}+t_{\text {cook }}$. There are two terms on the right hand side: $t_{\text {cyc }}$ for the cycling time, and $t_{\text {cook }}$ for the cooking time. You can make the job of working out the total time, $t_{\text {toal }}$, easier for yourself by thinking about $t_{\text {cyc }}$ and $t_{\text {cook }}$ one at a time.

You already made great progress with $t_{\text {cyc }}$ (Alex's cycling time) when you intuitively realized that $t_{\text {cyc }}$ must depend on the speed at which Alex cycles and the distance the customer's house is from Break Neck. But how do the speed and distance affect the cycling time?
What do you expect to happen for extremes, like a short distance or

a high speed?

$p_{i z z a}$ Delivery Magnets

Your job is to use the magnets to explain how the distance to the house and the speed at which Alex cycles affect the time it takes him to get there. There are only two words on the magnets, but they all have a place on the pictures.

$p_{i z z a}$ Delivery Magnets Solution

Your job is to use the magnets to explain how the distance to the house and the speed at which Alex cycles affect the time it takes him to get there. There are only two words on the magnets, but they all have a place on the pictures.

When you start, it helps to be a part of it and think about what happens at different extremes.

Before you start trying to work out what's going on with numbers and actual measurements, it's always a good idea to be a part of it. Use your intuition to think about what you expect to happen to the cycling time at certain extremes, like a long distance or a high speed.

If you already have a good idea about how the distance and speed affect the time, you're more likely to spot any little mistakes you make in your math.
 The web guys can already do that with their online mapping gizmo.

Joe: We now need to work out Alex's speed, so we can try to use it in an equation. I know this sounds weird ... but we might try being Alex. Putting yourself in someone else's shoes is supposed to help you solve problems.
Frank: Like "Alex pushes the pedals, and the bike goes forward"? OK, let's brainstorm. So say I'm Alex, out delivering pizzas all evening. I don't want to ride too fast, or I'll get tired.

Joe: But I also don't want to ride too slow, or I won't deliver that many pizzas and won't get as many tips.

It usually helps to BE someone (or something), so you see what the physics looks like from inside the problem.

Frank: But I'm the top delivery guy, so I have the experience to start off riding at the best speed and to keep up that speed for the whole evening.

Jill: So Alex always rides at the same speed. Hmm, if we can work out his speed, could we use that and the distances from the mapping gizmo to work out the time it takes him reach a house?

Frank: I think you might be right. But how on earth are we supposed to work out what speed Alex rides at? And how do we use that to get a delivery time?

Joe: Well, if Alex always rides at the same speed, he should
always cover the same distance in the same amount of time.
Frank: Ah ... I think I see what you mean. If Alex always goes at the same speed, and we measure his time for 1 km , it'll always take him that amount of time to cycle 1 km . But wouldn't we still need to time him over all possible distances to keep our bases covered?

Joe: I don't think we need to time Alex over lots of distances. If we time how long it takes him to cycle 1 km , we know, without having to time him again, that it'll take him twice as long to go 2 km .

Frank: Then, we can take his time for 1 km and say it'll take him half as long to go 0.5 km , and three times as long to go 3 km . I get it! So we only need to time him once to get his time for any distance.

Jill: I'm not so sure about only timing him once. A lot hangs on thisif we get the delivery times wrong, the customers get free pizza, and that's very expensive. Why don't we time him more than once over 1 km and take an average of all his times in case there's a bit of fluctuation between one run and the next?

Joe: A bit of uncertainty, you mean? That makes sense. And why don't we cover our bases by timing Alex over a variety of distances to make sure he does always ride at the same speed?

Jill: Sounds good to me.
Frank: Aren't we giving ourselves a harder calculation to do at the end though? If we just time Alex once over 1 km , it's easy to scale the time for a different distance -2 km takes twice as long, 0.5 km takes half as long, and so forth. If we time him more than once over a variety of distances, how can we work them out?

Jill: If we work out Alex's speed in meters per second, we can use that to work out the time. So suppose he goes at $10 \mathrm{~m} / \mathrm{s}$; he'd cover 100 m in $10 \mathrm{~s}, 1 \mathrm{~km}$ in 100 s , and so on. We can estimate his time for any distance if it follows the same pattern.

Frank: OK, I think you've managed to convince me - especially since the town is relatively flat, so there aren't any hills to mess things up. Let's go design an experiment!

Making multiple measurements gives you an idea of how widely your results are spread out.

At the moment, you're assuming that Alex always rides at the same speed. But what if he doesn't, or if his speed varies between trips or at different distances?

If you only time Alex once, you have no idea how consistent his

The margin of error for a measuring device is \pm half a scale division. speed is. If you time him more than once, and his results have a wide spread, then you'll probably need to think again. But if his times are all similar to each other and close to the margin of error of your stopwatch, then you're good to go with their average.

\square

When you design an experiment, think about what might go wrong!

Making more than one measurement is just one way of improving your experiment. Everything in your experiment - Alex, the road, your tape measure, and your stopwatch - could cause you problems! If you don't think about the worst that could happen before you start, you could end up with useless results and no chance to repeat the experiment.

Think about what might go wrong with all the things in your experiment - and how you would make sure the worst didn't happen.

Item involved in experiment	Potential source(s) of error	How to deal with this
Alex and his bike	Alex's speed is inconsistent. Alex gets tired as he cycles longer.	Time him more than once over a distance and take an average. Time him over both long and short distances.
The road	The road might not be flat. Alex would be slower uphill and faster downhill.	Make sure you do the experiment on a flat piece of road.
Tape measure	The tape measure might have stretched with use and not be accurate.	Test it against something you know is OK before you use it.
Stopwatch	The watch doesn't start at the right time. The watch doesn't stop at the right time.	Make sure you and Alex agree on a timing protocol before you start.

Don't worry if you said some other things, or if you didn't come up with every single one of these possibilities.

Random errors involve SPREAD. Minimize them by AVERAGING.

Some sources of error are built into the system. If you time Alex going downhill, he will be faster than he would
around the town, which is mostly flat. If the tape measure time Alex going downhill, he will be faster than he would
around the town, which is mostly flat. If the tape measure has stretched, the actual distance will be shorter than you think it is. Errors like these are called systematic errors, and they bias the results in one particular direction. Taking averages doesn't help reduce bias, as all the results will be higher (or lower) in the direction of the
bias. You need to spot them in advance and plan ahead the results will be higher (or lower) in the direction of the
bias. You need to spot them in advance and plan ahead to minimize them.

There are two different types of errorsrandom and systematic.

You already realized that if Alex's speed isn't 100\% consistent, his times will be spread around. This is similar to the range that a measurement may fall into due to your measuring device having scale divisions (like your myPod measurements). If Alex's times aren't too different for each ride, you can reduce the random error by making several measurements and taking an average.

> Systematic errors involve BIAS.
> Minimize them by PLANNING ahead.

OK - time to recap where you're at...

You're designing an experiment to help Break Neck Pizza with their website, on a spare napkin (as all good physicists do), but unfortunately, some of the words have succumbed to pizza grease.
Fill in the blanks using the words at the bottom of the box.
You might not use all of
the words, and you may
use some more than once!

Experiment to help Break Neck Pizza find out the it takes Alex to cycle any

Although / really want a delivery
I think the best way to do this is to work out Alex's he says he cycles at a constant all evening. I'm going to measure out several measure, making sure the ground is and that the tape measure isn't warped to reduce I'm going to each measurement take an to try to cut down on Then l can from the and measured to work out a delivery for any house, any away.

This means use the results you already have for some values to work out what the result would be for any value.

Missing words: speed, three times, extrapolate, direction, systematic, distance, once, repeat, average, time, distances, random, flat, times

Conduct an experiment to find out Alex's speed

You need to give Break Neck Pizza's customers a delivery time. It's important not to get this wrong since you'll have to give out free pizza if you do!

You've decided to do an experiment to find out Alex's speed when he's out delivering pizzas. Then you can use that to work out the time it takes him to cover any distance.

You're timing Alex over three different distances, three times for each distance. That way you'll be able to spot how consistent Alex's speed is and smooth over random errors. These crop up because you can't recreate exactly the same conditions each time, and because your measuring devices can't possibly be accurate to the nearest fraction of an atom! You've also thought of possible sources of systematic error and made sure your equipment is up to scratch.

Experiment to help Break Neck Pizza find out the time it takes Alex to cycle any distance.

Although I really want a delivery time, I think the best way to do this is to work out Alex's speed - he says he cycles at a constant speed all evening.
I'm going to measure out several distances with a tape measure, making sure the ground is flat and that the tape measure isn't warped to reduce systematic errors.
I'm going to repeat each measurement three times and take an average to try to cut down on random errors.
Then I can extrapolate from the times and distances I measured to work out a delivery time for any house, any distance away.

Here's what happens:
A dog ran out in front of Alex during the

Write down your results... in a table

As you're doing your experiment, write your results down in a table. This keeps all your related pieces of information next to each other, in rows or columns. You're less likely to make a mistake writing down a measurement if you use a table. It's also much easier to see what's going on and spot patterns in your experiment

The headings for your table should go in the top row, with the thing you're changing on the left, and the thing(s) you're measuring to the right. You should put the units of each column in the headings.

As you make measurements for your experiment, write them down in a TABLE.

Put units in the headings so that the table just has numbers in it.
Fill in the table using the results shown on the opposite page. You'll need to add some extra information to the table headers as well.

Transfer your
experimental results
into the table.

Tables help you keep your results ordered and make it easier for you to spot patterns.

Fill in the table using the results shown on the opposite page. You'll need to add some extra information to the table headers as well.

Look out for measurements that don't fit.

One of the reasons for timing Alex more then once over each distance was to assess the spread (or scatter) of his results. If he can't ride at a consistent speed, you'll have to think again about your whole approach.
In this experiment, all of the times for each distance are close together, with a spread similar to your stopwatch's margin of error. However, there's one time that's way off. The 80 s measurement for Alex going 250 m sticks out, and you need to think about why. Is it because Alex isn't very consistent - or did something go wrong just that one time?

If the measurements are spread out because Alex is inconsistent, you should probably make more and more measurements at each distance, so you can get a better idea of the spread and take a better average.

If there's a good reason for the outlying data (which there is here because a dog ran out in front of him), then it's OK to discard the measurement since it's not representative.

If a measurement doesn't fit, think about WHY it doesn't before deciding what to do with it.

Use the table of distances and times to work out Alex's speed

Now that you have a table of distances and times, you can work out Alex's speed. Speed is measured in miles per hour, kilometers per hour, or meters per second. "Per" means "divided by," so whatever the units, the dimensions of speed are distance divided by time. And the speed itself is the change in the distance Alex has gone since he started divided by the change in the time that's gone by since he started.
kilometers
You already knew this equation speed $=\frac{\text { (change in) distance }}{\text { (change in) time }} \longleftarrow$ per because you already knew the units!

Don't worry too much about the 'change in' bit for now. You'll see why it's really important later on in the chapter.

Once you've worked out Alex's speed, you can give the customer a delivery time for any distance.

Sharpen your pencil

Using the equation above, work out Alex's speed for each of the distances in the table.

Distance Alex cycles (m)	Average time (s)	Average speed (meters per second)
100	23.7	
250	58.5	
500	120.0	

There's space down here for your WORK (doing the speed calculations and converting the units). $-$

You can work

 out the equation for speed using its UNITS "miles per hour," "kilometers per hour," and so on. Speed is distance divided by time.Strictly speaking, this reasoning only works for simple equations. But here you intuitively know it's right.

Sharpen your pencil
 Solution

Using the equation, work out Alex's speed for each of the distances in the table:

$$
\text { speed }=\frac{(\text { change in }) \text { distance }}{(\text { change in) time }}
$$

$$
\text { speed }=\frac{\text { distance }}{\text { time }}=\frac{100 \mathrm{~m}}{23.7 \mathrm{~s}}=4.22 \text { meters per second }
$$

For the 250 m distance:

$$
\text { speed }=\frac{\text { distance }}{\text { time }}=\frac{250 \mathrm{~m}}{58.5 \mathrm{~s}}=4.27 \text { meters per second }
$$

For the 500 m distance:

$$
\text { speed }=\frac{\text { distance }}{\text { time }}=\frac{500 \mathrm{~m}}{120.0 \mathrm{~s}}=4.17 \text { meters per second }
$$

It's OK - there will be some spread in your experimental results due to random errors.

For a start, the error on each of your measurements is \pm half a scale division. Then there are random fluctuations in things you don't have control over - tiny changes in wind speed, the exact state of Alex's tires, tiny changes in the surface of the road, and so on.
When you measure the same thing more than once, you shouldn't expect exactly the same answer each time.

How can there be a different answer every time for the average speed? There must have been something wrong with the experiment!

$$
\text { the } 300 \text { m arscance. }
$$

Random errors mean that results will be spread out

Random errors mean that your experimental results will be spread around an average. If they're not spread out very much, your results are said to be precise.

However, if you have an underlying systematic error that's biasing your results in one particular direction (like if the stopwatch is consistently started at the wrong time),
then you won't be able to work out an accurate value by taking an average.

If you take the average of INACCURATE results, your answer is way off because

Reducing random errors improves your precision.

Reducing systematic errors improves your accuracy.

Dumb Questions

Q:- So I can reduce random errors by choosing a more accurate measuring device?

A:: You mean a more precise measuring device. Smaller scale divisions mean a smaller spread and lead to greater precision. A more accurate device would be one that reads true values.

Q: so could I get perfect precision as long as I use a fine enough scale division?
A : Not quite. At very small scale divisions, you get random fluctuations (errors), e.g., the distance read by a micrometer is affected by surface imperfections, and the reading on a balance by tiny air currents.

Q:OK, but the spread in Alex's speeds isn't because of things like that, is it?
A: It's impossible to set up your experiment with exactly the same initial conditions, right down to the position of every atom, each time. Your results will always have some kind of spread whatever you do.

Q:That's annoying. I worked out an average speed over three distances, and it came out different each time. How do I decide what the best average is?
A : You really need a better way of taking averages. We're just getting on to that now.

A graph is the best way of taking an average of ALL your results

So far you've been taking the average of one set of results at a time - but the average times (and, therefore, average speeds) for each distance are slightly different.
You can kind of think of this as a 'one-dimensional' average.

The best way to work out the average speed across all of your results is to draw a graph. Since you're expecting the time to double every time you double the distance, triple every time you triple the distance, and so on, your measurements will lie along a straight line. You can kind of think of this as taking a 'two-dimensional' average, as you're using two axes for your plot and are able to include measurements made for different distances on the same graph.

This also has the advantage of giving you a way of reading off the time it should take to cover any distance.
As is often the case in physics, a picture speaks a thousand words!

A Graph Up Close
You've probably drawn graphs before, so here's a quick refresher.
The most important thing is to make it clear what your graph is representing! That means you need a title, labels for each of your axes, and units along each axis.
Plot your points by putting the center of an ' x ' exactly where your measurement is.
If you're expecting each thing you've plotted to double when you double the other thing, draw the best straight line you can through all the points on your graph. This takes the best average possible of all your data and allows you to read off extra values by interpolating (for values that lie between your measurements) or extrapolating (for points that lie beyond the range of your measurements).

This graph isn't of the experiment you did with Alex - that's your job on the next page! It's another graph where the doubling thing happens - the cost vs. volume of pizza sauce!

Graph-drawing Tips

- If you're plotting how something changes with time, then time always goes along the horizontal axis.
- Look at the extremes of your data - the largest and smallest numbers. Choose a scale that allows you to use most of the paper.
- Remember to mention your units on the axes!
- Plot points using a small x (not a dot), so you can still see the points after you have joined them up.
- Join the points freehand with a smooth line unless you know that a straight line is more appropriate (e.g., if someone went at a steady speed).
- Drawing a straight line through your points is like taking an average, except in a better, more visual way than you did before in your table.
- Give your graph a meaningful title that makes its context clear.

Use a graph to show Alex's time for ANY distance

Alex is good at sticking to the same speed. This means that if you double the distance, then the time he takes to cover the new distance will double accordingly.

Just like the
cost and amount of sauce did In other words, the distance and time points should lie along a straight line when you plot them on a graph (give or take experimental error). And once you've plotted a graph, you can read off Alex's time for any distance.

Sharpen your pencil

a) Plot the measurements from the table as points on the graph (you can skip the outliers).
b) Then draw a best fit straight line through the points so that you can read off the time it'll take Alex to travel any distance.
c) How long do you think it'll take Alex to travel 400 m ?
d) And how would you work out his time for a house 1040 m away?

The line on the graph is your best estimate for how long Alex takes to cycle ANY distance

Now that you've drawn a graph, you can use it to read off ANY distance Alex may have to travel by extending the straight line you drew, and estimating the pattern or extrapolating from that.

So for example, if a house is 1040 m away (much further than any of the distances we got Alex to bike in the experiment), you can extend the graph and straight line to find out that it would take him 250 seconds to get there. The graph works!

There's only one problem - how to get the graph "into" the Break Neck website, so it can give the time to the customer.

d) Want to know how long it takes Alex to get to a
 house 1040 m away?

Step this way!

If Alex always goes at
the same speed, you'd
expect the points to
lie along a straight line.

Dumb Questions

Did you remember
to give your graph
a meaningful title?

Plot of distance vs. time for Alex cycling

Go across until you hit the line on the graph that represents Alex's speed.

You can EXTRAPOLATE by extending the line as far as you like, and reading off times for other distances.

Then go down from there, and read the value off the time axis.

Q:: Remind me again why we did the graph rather than just doing one measurement?

A:: To try to reduce the errors. Making many measurements is less error-prone than just making one.

Q:- So why not just measure Alex multiple times over one distance? Why use several different distances?

A:For a couple of reasons. First of all, you need to make sure that he's not going to go at different speeds for different distances (even though you asked him to try and ride at the same speed each time).

Secondly, timing him over several distances has enabled you to draw a graph.

Q: So why not be like a spreadsheet program and join the points properly? Why draw a line that doesn't even go through some of the points?

A- Doing a best-fit straight line effectively takes an average of your measurements. If Alex goes at the same speed the whole way, you'd expect the points to all lie along a straight line. Errors mean that they don't. You're trying to 'find' the line that the errors have obscured. A graph allows you to see where outlying points are. You can then make them count less by not going so near them with your line.

you are here
119

You can see Alex's speed from the
 If you SEE it, you get it!

 steepness of the distance-time graphThe distance-time graph not only lets you read off values, but it also lets you see how fast something's going at a glance.

The faster someone is, the greater the distance they go in a set time. When you plot their distance-time graph, you'll see its slope (or gradient) is steeper compared to someone who's slower. The higher the speed, the steeper the slope of the distance-time graph.

So if Alex raced against the delivery personnel from some of Break Neck's rivals (all going at their steady delivery speed), you'd be able to pick the winner in advance from the slope of their distance-time graphs.

In physics, the steepness of a graph is called its SLOPE.
 The slope can also be called the gradient - they're the same thing.

The exercise bike is completely STATIONARY, so the slope of its distance-time graph is completely FLAT.

The faster something's going, the steeper the slope of its distance-time graph.

A steeper line shows that someone's covered more distance in the same time, so they must have a higher speed.

Graphs of distance vs. time for

You can only compare the slopes of graphs by eye if they have the same scale.

All the graphs on the opposite page have the same scale. This means that you can just see who's going the fastest, as their graph has the steepest slope.

But if you have one graph where 1 cm on paper $=200 \mathrm{~m}$ in real life and another where $1 \mathrm{~cm}=10 \mathrm{~m}$, then a line representing the same thing will look very different.

However, a delivery person will still cover the same distance in the same time no matter which scale you use for their graph. So the distance on their graph will still change by the same number of meters in the same time. Whatever scale it's drawn at, the numbers don't change, and you can calculate a value for the slope.

This is being qualitative, like saying "this one's faster" or "this one's slower" but without mentioning any

Which means to do things with numbers so that the website can give the customer a delivery time

This means doing things with numbers (so that the website can give the customer a delivery time).

To be quantitative, you have to calculate the slope of your graph using numbers.

If you calculate the slope of your distance-time graph, it'll give you an equation which will show you how the distance and time relate to each other. And as Alex's speed is (change in) distance divided by (change in) time, you'll be able to work that out. This is what you really want for the Break Neck Pizza website!

> When you calculate the slope of a graph, you get an equation which shows you how the two things you plotted on the graph relate to each other.

Alex's speed is the slope of the distance-time graph

To calculate the slope of a straight line graph, pick two points on it, and work out the change in the vertical direction divided by the change in the horizontal direction. The steeper the graph, the larger the slope.

On your graph, the vertical axis is distance, and the horizontal axis is time. So the slope of your graph is change in distance divided by change in time - exactly the same as your equation for Alex's speed.

To save time, you can use shorthand ' Δ ' which means "change in." So "change in distance" is Δ distance.

1 s m
 conds "Per" means "divided by", so whatever the units, the dimensions of omer
 speed are distance divided by time. And the speed itself is the change in the distance Alex has gone since he started, divided by the change in the time that's gone by since he started.

- Remember to write down the equation for the slope before putting the numbers in.
- Always subtract the coordinates of the left-most point from the coordinates of the right-most point.
- When you've calculated the slope, look back at the graph to see if your answer SUCKs. A slope of 2 would mean that the graph goes up 2 for every 1 you go across. Does your graph look the same as your numerical answer?
- Remember to include units in your answer.

Use these tips to help you work out the slope of Alex's distance-time graph.

Now work out Alex's average speed from your graph

Sharpen your pencil

a. Choose two points on the line, and calculate the slope of the distance-time graph.

Use the tips on the opposite page to help you.
b. What do you notice about the units of your answer?

\square

Sharpen your pencil Solution

a. Choose two points on the line, and calculate the slope of the distance-time graph.
b. What do you notice about the units of your answer?

a. Point I is $(12 \mathrm{~s}, 50 \mathrm{~m})$, Point 2 is $(96 \mathrm{~s}, 400 \mathrm{~m})$

Slope is $\frac{\Delta \text { vertical }}{\Delta \text { horizontal }}=\frac{\Delta \text { distance }}{\Delta \text { time }} \begin{aligned} & \text { This is the same } \\ & \text { as your equation } \\ & \text { for speed! }\end{aligned}$

Don't worry if you picked different points or got a slightly different answer.

$$
\text { (Putting numbers in) }=\frac{400 \mathrm{~m}-50 \mathrm{~m}}{96 \mathrm{~s}-12 \mathrm{~s}}=\frac{350 \mathrm{~m}}{84 \mathrm{~s}}=4.17 \text { meters per second (3 sd) }
$$

b. The units of the slope (meters per second) are the same as the units for speed - distance divided by time.
This makes sense, as the equation for slope of the graph is the same as working out the distance covered per amount of time. The slope of the distance-time graph is the speed!

The slope of the distance-time graph is the speed.

Q:
Way back on page 112, I worked out Alex's speed for each of the measurements we made, and it always worked out somewhere close to 4.17 meters per second (the answer I just got from the graph). So what's the point of doing a graph when it just gives me close to the same answer again?

A:: The main reason is that by plotting the points and drawing a best-fit straight line, you take a better and more informed average of your experimental results than you'd be able to otherwise. The speed you got from doing the graph is more accurate than what you'd get from a single measurement.

A graph helps you see what's going on. If you see it, you get it.

Q:I got a slightly different answer from you. Is that OK? You probably drew a slightly different 'best-fit' line through your points. That's fine.

Q: But there must be an actual best-fit line?
A : Yes, if you use special statistical software to draw the line, you always get the same answer. But you don't have that on hand during an exam!

Q: ok. But what about Alex's speed and the slope of the graph? How can you say they're the same thing?
A: : Alex's average speed is Δ distance divided by Δ time - egg., meters per second. The slope of any graph is Δ vertical direction divided by Δ horizontal direction.

So if you draw a graph of Alex's distances and times with distance on the vertical axis and time on the horizontal axis, then its slope is the same as Alex's average speed.

You need an equation for Alex's time to give to the web guys

You've used the results of your experiment to draw a distance-time graph and calculate its slope, which is the same as Alex's speed. That's fantastic!
But the web guys need to be able to use Alex's speed and the distance to a house to work out the time it takes Alex to get there. And they're asking you for an equation that they can plug the distance and speed into to get the time.
You already have an equation that involves speed, distance, and time, which you worked out from the units of speed:

This gives you the average speed at which something travels between two points. But the equation says "speed $=$ " on the left hand side, allowing you to work out a speed if you know a distance and a time. What the web guys want is an equation that says " Δ time $=$ " on the left hand side, so they can work out a time from the map distance and Alex's speed.
How are you going to get an equation that the web guys can use?

Rearrange the equation to say " Δ time = something"

If you have an equation where the thing you want isn't on the left hand side all by itself, you'll have to rearrange the equation so that it is.

The top thing to remember when rearranging equations is that you must do the same thing to each term on both sides of the equation or else the two sides won't be equal (or balance) anymore. The huge advantage of this is that you don't have to remember lots and lots of equations, as you can rearrange the ones you know to figure out what you need.

You can rearrange your equation to say " Δ time $=$ something" like this:

1

For time, speed, and distance, you only need ONE equation, which you ALREADY know (from the units of speed).

At the moment you're dividing by Δ time. You want an equation that says
" Δ time $=$ something." So multiply both sides by Δ time to get it off the bottom.

You now have Δ time where you want it, but at the moment it's being multiplied by speed. So divide both sides by speed to sort that out.

3

If you're adding or subtracting, that's a whole new term that you need to add/subtract from each side.

An equation that says " Δ time $=$ something" that you can use for the Break Neck website. Sorted!

When you
 rearrange an equation, show your work ...

At the moment you're dividing by Δ time. You want an equation that says
" Δ time $=$ something." So multiply both sides by Δ time to get it off the bottom.

You now have Δ time where you want it, but at the moment it's being multiplied by speed. So divide both sides by speed to sort that out.

An equation that says " Δ time $=$ something" that you can use for the Break Neck website.

Math is the main tool you use to communicate ideas and make predictions in physics.

A large part of physics is understanding the physical principles behind things. And to an extent you're right - you can do reasonably well in high school physics by understanding some principles and rote-learning a few equations.
But when you step up a level to AP Physics, there are far too many potentially useful equations and relationships for you to be able to memorize them all, never mind every single way they can be rearranged. And you need to be able to use the principles to make concrete predictions - for example, the time it'll take Alex to cycle a particular distance. And that has to involve math.

This chapter is all about learning to use graphs and equations, two universal languages of physics. Like any language, math can be difficult to get used to at first. But with practice, you'll get used to communicating the physics principles with it. More than that - as you move on, the math enables you to understand and visualize difficult physical principles and concepts.

At AP level, being able to rearrange equations yourself is a must, so stick at it. The rewards are massive, as you'll only need to learn relatively few fundamental equations, which you can then rearrange to get any other equation you might need. Thinking like a physicist isn't about rote memorization. So hang in there - it will get easier!

In physics, math is a vital tool for making predictions and communicating principles.

Use your equation to work out the time it takes Alex to reach each house

You now have an equation that lets you predict how long it takes Alex to get to each of Break Neck's potential customers!

First, you designed and carried out an experiment. After looking at the results to see how spread out they were, you plotted the results on a graph, drew a best-fit straight line, and calculated the slope of the line to find Alex's speed in terms of the change in distance and change in time. Phew!

And you've just rearranged the speed equation so that you can put in a speed and distance to calculate the time it takes Alex to travel that distance at that speed:

$$
\Delta \text { time }=\frac{\Delta \text { distance }}{\text { speed }}
$$

So now you can do a test run with some random addresses to catch any potential problems before the site goes live.

Sharpen your pencil

Use Alex's speed (4.17 meters per second) and the equation you worked out to give these Break Neck customers a delivery time.

Customer's address	Distance (m)	Calculation	Time (s)
57 Mt. Pleasant Street	1000		
710 Ashbury	3500		
29 Acacia Road	5100		

Use Alex's speed (4.17 meters per second) and the equation you worked out to give these Break Neck customers a delivery time.

Customer's address	Distance (m)	Calculation	Time (s)
57 Mt. Pleasant Street	1000	Δ time $=\frac{\Delta \text { distance }}{\text { speed }}=\frac{1000}{4.17}$	$240(3 \mathrm{sd})$
710 Ashbury	3500	Δ time $=\frac{\Delta \text { distance }}{\text { speed }}=\frac{3500}{4.17}$	$840(3 \mathrm{sd})$
29 Acacia Road	5100	Δ time $=\frac{\Delta \text { distance }}{\text { speed }}=\frac{5100}{4.17}$	1220 $(3 \mathrm{sd})$

So you do a test run with the website ...

... but there's a problem. The programmers set the website up to display delivery times in units of minutes. Your calculation used seconds, but the units weren't converted before being displayed.

> Doing the question right, but giving the wrong UNITS in your answer is a common, but avoidable, error.

4 HOURS for a delivery?! No way! I'm much faster than that.

So just convert the units, and you're all set...right?

Not so fast! Any time you think you're ready to roll with an important website (or even an answer on your exam), take a look from 20,000 feet away and ask yourself: Does this SUCK?

You're never finished until
 you've asked: "Does it SUCK?"

Sharpen your pencil

Change the units for this customer's delivery time to minutes, then step back to see if it SUCKs.

Customer's address	Time (s)	Calculation	Time (minutes)
57 Mt. Pleasant Street	240		

U

 UNITS - Do they have units, and are they what you were asked for?

CALCULATIONS - Did you do the math right?

\qquad
\qquad

Sharren your pencil Solution

Change the units for this customer's delivery time to minutes, then step back to see if it SUCKs.

Customer's address	Time (s)	Calculation	Time (minutes)
57 Mt. Pleasant Street	240	$240 \mathrm{~s}=240 \mathrm{~s} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}<\underbrace{}_{\substack{\text { Conversion } \\ \text { factor }}} 4$	

SIZE - Are the answers the size you're expecting?
Well, 4 minutes is plausible for pizza delivery in a way that 240 minutes isn't!

UNITS - Do they have units, and are they what you were asked for?
They asked for minutes, and they've got minutes. (Well, they do nowl)

CALCULATIONS - Did you do the math right?
The first equation ! wrote down was $t_{\text {to }}=t_{\text {ece }}+t_{\text {cook }}$ where $t_{\text {cyo }}$ was the cycling time, and t the cooking time. OH NO, I FORGOT ABOUT THE COOKING TIMEII
"K'ONTEXT - What are you trying to do, and is it the same as what you actually did?
Apart from using the wrong units originally, and forgetting the cooking time, I think the rest is OK.

Doing part of the problem right, then writing the 'interim' answer to that part as your final answer by mistake is another common (and very avoidable) error!

The original equation included both a delivery time and a cooking time. You did a fantastic job of working out the hard part - the delivery time - but forgot to add on the cooking time at the end.

This is the total delivery time the website should give the customer.
 CHECK
EQUATION! $\begin{gathered}\text { Use } \\ \text { equatio }\end{gathered}$ equation
 Sharpen your pencil 4.17 meters per second

Work out the cooking time from what the chef tells you. \downarrow

Customer's address	Distance (m)	Order	Road time (s)	Road time (min)	Cooking time (min)	Delivery time (min)
57 Mt. Pleasant Street	1000	1 Italian	240	4		
710 Ashbury	3503	2 deep pan	840			
29 Acacia Road	5100	1 Italian	1220			

Work out the cooking time and total delivery time for each of the orders.

Customer's address	Distance (m)	Order	Road time (s)	Road time (min)	Cooking time (min)	Delivery time (min)
57 Mt. Pleasant St.	1000	1 Italian	240	4	10	14
710 Ashbury	3500	2 deep pan	840	14	13	27
29 Acacia Road	5100	1 Italian 1 deep pan	1220	20 m 20 s	13	33 m 20 s

This answer works out at 20.3333333... minutes. The fraction at the end is a third of a minute, \qquad which is 20 seconds (not 33 seconds). Don't forget that there are b0 seconds in a minute (and not 100), so you need to convert the fraction of a minute into seconds at the end.

The Break Neck website goes live, and the customers love it!

You've done it! Break Neck have a shiny new website thanks to your experiment, graph, equation, and units conversion. Every time a customer makes an order, they're given a delivery time that they can plan their evening around.
The customers are delighted, and word's starting to get around. Alex is pleased too. He's getting more tips and has nearly saved up enough for the new myPod he has his eye on.

A few weeks later, you hear from Break Neck again

Most of the pizzas are still arriving on time ... but some of the pizzas are late, and the customers are starting to get impatient with Break Neck. The worst thing that could happen would be customers switching to one of Break Neck's competitors because of a bug in the website.

So Break Neck has asked you to come back on a new contract to see if you can work out what the problem is.

Break Neck used to be great, but tonight my pizza was late, and I missed the end of my favorite show when I was answering the door. If they don't improve, I'll have to find a new pizza place...

On time.

On time.

Hint: BE ... Alex.
What might have changed? There's some space under here to jot down some ideas before you ask Alex.

But why are only some pizzas now arriving late when the rest are still arriving on time?

A graph lets you see the difference the stop lights made

If you can see the difference the stop lights made to Alex's
journey, you're more likely to be able to work out what to do about it.

The line already on the graph represents what we expected Alex to do-travel at a constant speed without stopping, so he reaches the house in four minutes.

Draw Alex's actual journey (which he describes over there on page 136) on the graph to show and compare the difference that the stop lights made.

Sharpen your pencil Solution

The line already on the graph represents what we expected Alex to do - travel at a constant speed without stopping, so he reaches the house in four minutes.
Draw Alex's actual journey (which he describes over there on page 136) on the graph to show and compare the difference that the stop lights made.

It's easy to tell when something's sitting still, as the slope of its distance-time graph is zero (or a flat line).

The stop lights change Alex's average speed

The average speed for a trip is the constant speed at which you could have traveled to cover the same total distance in the same total time. So Alex's average speed is the slope of a line between his start and end points on his distance-time graph since the slope of a distance-time graph is the speed.

Sharpen your pencil

a. Draw a line on the graph to represent Alex's average speed.
b. Calculate Alex's average speed for the delivery in meters per second (show your work down the side).
c. Does Alex ever actually travel at his average speed?

\section*{Sharpen

\section*{your pencil

your pencil Solution

a. Draw a line on the graph to represent Alex's average speed.
b. Calculate Alex's average speed for the delivery in meters per second (show your work down the side).
c. Does Alex ever actually travel at his average speed?

Space for part b work.
Choose point I to be the start of the run, and point 2 the end. ie., $(0 \mathrm{~min}, 0 \mathrm{~m})$
$(8 \mathrm{~min}, 1000 \mathrm{~m})$

$$
\begin{aligned}
\text { speed } & =\frac{\Delta \text { distance }}{\Delta \text { time }} \\
& =\frac{1000 \mathrm{~m}}{8 \mathrm{~min}} \\
& =125 \text { meters per min }
\end{aligned}
$$

But was asked for speed in meters per second:
$125 \frac{\text { meters }}{\text { min }}=125 \frac{\text { meters }}{\text { min }} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}}$

$$
=2.08 \text { meters per second (} 3 \mathrm{sd} \text {) }
$$

Space for part c answer.
He never travels at the average speed for any significant length of time (though he must briefly go at it as he speeds up/slows down for each light).

With an AVERAGE speed, it's the changes in total distance and total time that are important.

Add on two minutes per stop light to give the customer a maximum delivery time ...

So you - and Alex - have reached the end of the road. You realized that the stop lights slow him down. But you were able to get the online map to consider the number of stop lights on his route when giving the customer a maximum delivery time.

If the lights are red, that's OK because you planned for that to happen. If the lights are green, and Alex isn't slowed down, then Trying to do something with the average speed will be too difficult at this stage; this is simpler.

In physics, simpler is usually clearer - and, therefore, better! the pizza arrives early, and the customer is still happy.
... the customers are extremely happy ...

Fantastic pizza, and on time too!

The 14 minutes you calculated before plus up to 2 minutes for each of the 2 stop lights.

and you're invited to the Pizza Party

you are here
141
Download at WoweBook.Com

If you understand physics, you don't have to memorize equations!
 Think like
 a physicist!

Physics isn't about learning equations. Physics is fundamentally about the world around you.
When you're trying to work stuff out with physics, it usually involves making measurements, then drawing graphs and/or writing down equations that show you how varying one thing (like the distance to a house) changes something else (like the delivery time for a pizza).

Yes, there'll be some equations that you'll have to learn to get by - but only a few. Most of the ones in this book are equations that you can work out from the general physics principles you're learning. Remember - put yourself into the heart of the problem, then use what you already know! Use your intuition and graphs to see whether you expect something to get bigger or smaller when you change another thing.

In physics, memorizing is the opposite of understanding!

If you see it, you get it!

Then you can rearrange it to get what you want.

I guess there are a few equations that are kind of common sense, so you don't need to memorize them if you just think about where they come from?

You already knew the two equations

 you've used in this chapter!The first equation you used was:

$$
\text { speed }=\frac{\Delta \text { distance }}{\Delta \text { time }} \longleftarrow \text { per } \text { second }
$$

But that was something you already knew! Every time you say something has a speed of "70 miles per hour," you're quoting units that you can use to write down that equation straight out of your head!

The second equation you used was:

$$
\text { slope }=\frac{\Delta \text { vertical direction }}{\Delta \text { horizontal direction }}
$$

But you already knew that one too! Steep hills have big slopes. So you can use your intuition to work out that Δ vertical must be on the top of the fraction so that you get a big value for a big slope.

Graph

You've heard it said - "A picture speaks 1000 words," and "If you see it, you get it." Which kinda makes me wonder - what on earth are you doing here in my chapter, Equation?

Obviously one that got past the editor! I mean, in a chapter that's mostly about visualizing things, what role do you have to play?

But with me, you can see how two things relate to each other-how one thing responds when the other thing changes.

Huh? Variables, which you have to look up before you make any sense whatsoever! All those symbols and letters, whereas I'm easily accessible from the start!

Equation

Well, that's a nice way to draw me into the conversation considering the chapter title actually names me first - "equations and graphs," it says there.

I'm just a different way of visualizing things. With me, it's easy to see, at a glance, when two things are equal to each other - you can't do that.

But I can do that too. All you need to do is think what'll happen to the stuff on the other side of the equation when you change the value of one of the variables.

I disagree- you only make sense once someone's gotten used to working with graphs! Anything strange can become familiar if you use it a lot. Once you're used to my kind of shorthand, you'll be able to use it to convey a lot of information in a very small space and short amount of time.

Graph

And random letters are easy to get used to, are they?

But can you do slopes?! Can you display experimental results? Do people plant little kisses on you, like this \boldsymbol{X} ? In short, are you loved?

Uhhhhh - how do you mean?

I think not! I have a slope, and you have ... well, you have nothing of great interest.

No, it's not! The slope is Δ vertical direction divided by Δ horizontal direction, and there's no division sign in your equation!

Well, I guess you might just be a teeny bit more versatile. But I'm still the best for visualizing things!

Equation

They're not random, actually. Physicists always choose the same letter to mean the same one thing in equations. So once you've learned the lingo, it's not as hard as you make it out to be.

Has it ever occurred to you that a graph and an equation are just different ways of saying these same things?

Take that distance-time graph from earlier on in the chapter. It's the same as the equation
Δ distance $=$ speed $\times \Delta$ time except drawn out. (But it's not as long-winded!)

Oh, but this equation tells you all about the slope of the graph. You have to work out your slope using an equation in the first place, don't you? And if you've plotted a distance-time graph, then it's the same equation as I already said.

Ah, but equations can be rearranged to give you anything you want (as long as it was in or related to the equation in the first place).

I'm not denying that - just pointing out that I'm not entirely useless, you know!

Question Clinic: The "Did you do what they asked you" Question

This question contains
two different units It also contains two of distance. different units of time.
2. A runner jogs one kilometer to a 400 m track, where he starts doing laps. For the first half hour, he passes the finish line every 90 seconds. After this, he does four more laps in 75 seconds each.

And here's yet another unit
a. How far does he run in the first 30 minutes of $\int_{\text {and tier ! }}^{\text {of time! }}$ his training session?
b. If he started his training session at 1:00 pm, what time does he finish at?

And another way of writing down a time!

By the time you've done the whole question, have you forgotten about the 1 km he jogged to get to the track in the first place?
c. If he takes the bus home, how far has he run

This distance is written in words rather than figures, which makes it more difficult to spot! in total that day?

Distance A length; the number of meters (or miles, or so forth) you cover when you take a partic ular route between two points.

How long something takes; how many seconds (or minutes, and so on) that elapse between two moments you're interested in.

How fast something's going - the rate of change of distance with time.

Graph

Equation A mathematical representation of how variables depend on each other.

Slope

The steepness of a graph; the change in the vertical direction divided by the change in the horizontal direction.

Your Physics Toolbox

> You've got Chapter 4 under your belt, and you've added some terminology and answer-checking skills to your toolbox.

Do an experiment

An experiment enables you to find out how two variables depend on each other - like distance and time in this chapter.

Draw a graph

A graph visually shows you how two variables relate to each other.
You'll usually want to know how something varies as time goes on. ALWAYS put time on the horizontal axis of your graph.

Think about errors

Think about sources of experimental error at the design stage.
Reduce systematic errors by
planning ahead.
Reduce random errors by making multiple measurements and averaging (either mathematically or by drawing a graph).

The slope of a graph

You can use the equation

$$
\text { slope }=\frac{\Delta \text { vertical direction }}{\Delta \text { horizontal direction }}
$$

to compare the two variables you've plotted on your graph to each other.

Work out an equation

 An equation shows you how variables relate to each other mathematically. Use the same letter for the same 'type' of thing, e.g., ' t ' for a time.Use subscripts to represent different things of the same 'type', like you did with $t_{\text {cook' }} t_{\text {total }}$ and $t_{\text {eye }}$.

Rates and slopes

When you've plotted time along the horizontal axis, the slope of the graph gives you the rate at which the variable on the vertical axis changes with time.
So the slope of a distance - time graph gives you the speed, as speed is rate of change of distance with time.

Rearrange your equation

If the equation you come up with doesn't have the variable you want to work out on its own on the left hand side, you have to rearrange your equation.
Make sure you always do the same thing to both sides at each stage so that your equation stays balanced. It's safer to show more work than it is to show no work at all.

5 dealing with directions

Time, speed, and distance are all well and good, but you really need DIRECTION too if you want to get on in life.

You now have multiple physics superpowers: You've mastered graphs and equations, and you can estimate how big your answer will be. But size isn't everything. In this chapter, you'll be learning about vectors, which give direction to your answers and help you to find easier shortcuts through complicated-looking problems.

The treasure hunt

It's treasure time. You and your teammate, Annie, are part of a scavenger hunt. To be the first team to reach the prize at the end of the game, you have to follow four clues.

Clue 1

Backwards and forwards, forwards and back Is immediate action your plan of attack? First ponder - then go - for soon you will spot That the target may seem far away ... but it's not. Go: 1) 60 meters North
2) 150 meters South
3) 120 meters North
4) 60 meters South
5) 20 meters South
6) 40 meters North

The start of your journey is right by the tree, and continues whenceforth you unearth the next key.

Ye olfe treasure mappe

This'll help you with distance.

What do you think is the best way to guide Annie to the next clue as quickly as possible?

Joe: I say we just tell Annie to get going and follow the directions as quickly as possible!

Mary: Hang on, the clue says to "first ponder - then go."
Joe: Hmmm?
Mary: I mean, we should think first rather than rushing into it. The directions do seem to be a bit...uh... repetitive. It's silly to do the same thing over and over again if we don't have to.

Joe: Oh yeah, I see what you mean. The first instruction sends us off to the North - and then the next one makes us retrace our steps back to the South again!

Mary: All of the directions in the clue are either North or South. So we're just running up and down the same line until we get to the end of the directions.

Joe: So following the instructions exactly isn't the quickest way after all.

Mary: What if we try to imagine the directions first - that'll be quicker than doing all that running backwards and forwards. So that's 60 m North, then 150 m South, then ...

Joe: Isn't it better to sketch them out? It'll be much easier to see what's going on than trying to hold onto all these directions in our heads.

Mary: I guess so - let's get to work!

Sketching things out on paper leaves room in your brain to think about physics.

Sharpen your pencil

Your team already started a sketch of the instructions in clue 1, but they haven't managed to finish it off yet.

That's your job.

They've decided to represent each leg of the instructions using an arrow so that 1 cm represents 20 m . They've also decided to spread the arrows out a bit, so they aren't all drawn on top of each other.

Sharpen your pencil Solution

Your team already started a sketch of the instructions in clue 1, but they haven't managed to finish it off yet.

That's your job.

They've decided to represent each leg of the instructions using an arrow so that 1 cm represents 20 m . They've also decided to spread the arrows out a bit, so they aren't all drawn on top of each other.

Displacement is different from distance

You've just worked out that Annie will end up very close to the tree if she follows the directions in the clue line by line. This illustrates the difference between distance and displacement.

Distance is the actual total distance traveled. If you walk 70 m North, then 30 m South, you travel a total distance of 100 m .

This is just a number with units - a size with no indication of direction.
But displacement is the change in position between two points regardless of the route you take to get there. If you walk 70 m North, then 30 m South, you \qquad This has both a size wind up 40 m North of where you started. So your displacement is 40 m North. $\&$ and a direction.

Sharpen your pencil Solution

a. Work out the distance Annie would travel if she followed the instructions in the clue exactly.

$$
\begin{aligned}
\text { Distance } & =60+150+120+60+20+40 \\
& =450 \mathrm{~m}
\end{aligned}
$$

She'd travel 450 m if she followed the instructions in the clue exactly.
b. Work out Annie's displacement - the size and direction of the change in position between her start and finish points.

The picture with the arrows on it shows that she ends up 10 m South of where she started.

Clue 1

Backwards and forwards forwards and back Is immediate action your plan of attack? First ponder - then go - for soon you will spot That the target may seem far away ... but it's not. Go: 1) 60 meters North 2) 150 meters South 3) 120 meters North 4) 60 meters South 5) 20 meters South 6) 40 meters North

The start of your journey is right by the tree, and continues whenceforth you unearth the next key.

Each of the instructions in the

clue is a displacement - with a
SIZE and a DIRECTION.

Q:So Annie ends up 10 m South of where she started! Isn't the clue a lot of fuss about nothing?!
$A:$
: The point of the clue is thinking before you act. If you set out instantly to try and save time, you actually end up running much further.

Q: We've done a lot with units in the past. Are the units of distance and displacement the same?
A Distance and displacement are both measured in meters (or other units of length).

Q: How can distance and displacement be different things when they both have the same units?
A : Displacement has a direction attached to it - distance doesn't.

Q: Doesn't a direction have units too?
A: No. North, south, left, right, horizontal, vertical ... etc. None of them have units.
$Q:$ - OK, I think I'm getting it now. Distance and displacement are different because distance is just a size - but with displacement there's also a direction.
A : That's right ... and we're just getting to that now.

Distance has a size. Displacement has a size and a direction.

Distance is a scalar: displacement is a vector

Distance is an example of a scalar quantity in physics. Scalars only have a size, like 10 meters.

Displacement is an example of a vector quantity in physics.

Vectors have a size and a direction, for instance 10 meters South.

The instructions in the clue are all vectors, as they have a size and a direction. The route you take to get to the next clue isn't important - all you're really interested in is the change in position between the start and end points.

Scalars only have a SIZE.

Vectors have a SIZE and a DIRECTION.

You can represent vectors using arrows

You can represent a vector quantity using an arrow, where the length of the arrow is proportional to the vector's size, and the arrow points in the vector's direction. You already did this when you were solving the clue.

You also intuitively added the vectors correctly, lining them up "nose-to-tail" by putting the tail of the next vector by the nose of the previous one.

If the vectors all lie along a straight line (like the ones here) it can be confusing just to draw them all on top of each other. It's easy to lose track of where you are. So sometimes it's appropriate to line them up next to each other (like you already did) with the understanding that they're actually all on top of each other.

> You can add vector arrows by lining them up "nose-to-tail."

Nope. The only thing that matters is adding vectors "nose-to-tail."

 When you're adding vectors together, you should always line them up "nose to tail." This is what's important - it doesn't matter which order you add the vectors in.Practically speaking, it might be easier to add together all the Norths first, then all the Souths, since the overall displacement is still the same.

Adding the vectors in ANY ORDER will result in the same

 Each of theSo when we add the vectors up nose-to-tail, does it matter which order we do it in?

You can add vectors quickly using math.

If you go 60 m North, and then 60 m South, your displacement is zero since you're back where you started.

North and South are opposite directions - so you can use opposite signs to represent them mathematically. Suppose you decide that traveling North is positive, and traveling South is negative. So 60 m North, then 60 m South is a displacement of 60-60 $=0 \mathrm{~m}$ (or $60+-60=0$).

When you were working out the displacement, you might already have intuitively done something like this (by making North the positive direction), like 60-150 + 120-60-20 $+40=-10 \mathrm{~m}$, which is the same as 10 m South of where you started. Or you may have added together all the Norths, then all the Souths, like the vector diagram on the other
 page.

This ONLY works if you have
 You can use opposite signs to mean opposite directions.

Q: If vectors add "nose-to-tail," then how do scalars add?
A
: The same way they always have - you just add the numbers together.

Q:
Are there any other vector quantities apart from displacement?
A:
Yes - well meet some others soon ...

Q:
Don't you need to define a starting point before you add your vectors?
A:
Yes, that's right. Sometimes there'll be an obvious starting point - like a tree! Sometimes you'll need to define one. For example, if you're describing heights, it's conventional to make 0 m equal to sea level and measure everything else in reference to that.

Q: How do you decide which way is positive and which way is negative?

A:: It's up to you - as long as you choose a direction and stick with it, the math will work out the same. If you make North positive and your answer is -10 m , it means 10 m South. And if you make South positive and get the answer 10 m , that means 10 m South as well. You just need to remember how to interpret the sign of your answer at the end.

You found the next clue...

But there's a problem ...

Ye olfe treasure mappe

Sharpen your pencil
 Solution

a. Draw the instructions from the clue on the map using vector arrows.
b. "Do not be swamped" is an important part of the clue. Write down your ideas about how you might achieve this.

Going East then North is impossible because
. of the swamp But you can get to exactly
the same place by going 1100 m North,
then 700 m East. - You can follow the
instructions either way around.

You can add vectors in any order

Even when vectors aren't pointing along the same line, you can still add them together by lining them up "nose-to-tail."

Whichever order you add them in, you always end up with the same difference in position between the start and finish points.

So you can send Annie 1100 m North first, then 700 m East. This way, she'll find the next clue without getting swamped.

Q:So you're saying that even if I have hundreds of vectors, it doesn't matter what order I add them in?
A:

- Exactly! As long as you line the vectors up "nose-to-tail," you'll always end up with the same resultant vector at the end.

Q: Wait, what's a resultant vector?!
A : : It's just another way of saying "answer vector." A resultant vector is what you get when you add together other vectors.

Q: So if I add together vectors, do I always get a resultant vector as my answer?
A : : Yes. If you're adding vectors, your answer must also be a vector.

Q: can a vector equal zero? Is that still a vector?
A : Yep, in the context of vector addition, you get a special vector called the "zero vector."

Q: It's OK to use a different sign for two directions when they're total opposites, like North and South, isn't it? But what about when they're not opposites - like North and East in this clue. How do I add the vectors using math then?

A: Great question - and something you'll learn all about in chapter 9.

> When you add vectors together, jour answer an be called the resultant vector.

BULLET POINTS

- Scalars have size. Distance is an example of a scalar.
- Vectors have both size and direction. Displacement is an example of a vector.
- You can represent vectors using arrows.
- The length of a vector arrow is equal to the size of the distance.
- The direction of a vector arrow is equal to direction of movement.
- You add vectors by lining them up "nose-to-tail" and following the arrows from start to finish.
- If your vectors all lie along a straight line, you can add them quickly using math by defining one direction as positive and the other direction as negative.
- If your vectors point in different directions, you can still add them by lining them up nose-totail, and following the arrows.
- You can add vectors in any order regardless of which direction they point in.

Well done - you've found the third clue!

And along with the third clue at the shore of the lake is a motor boat. There's a problem though - the clue has a lot of numbers and technical jargon in it.

To pick your way through it, first, work out what you're supposed to do. Once that's clear, think about how you might do it.

First what, then how.

Sharpen your pencil

Think - first what, then how.
Underline the parts of the clue that give you the "what," then use your own words to write down what you're supposed to do - and also how you might do it.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Question Clinic: The "Wheat from the chaff" Question

Sometimes a question will have a lot of unfamiliar words or

Parts of the question contain irrelevant information and unfamiliar words. Don't let that stress you out or make you think you can't do it.

As long as you can sort out the wheat from the chaff - or the important information from the irrelevant padding - you'll be fine.

Now that you're traveling on the high seas. Set your course to the bearing 330 degrees. Start from East, and turn counter-clock. Then $4 x$
100 m , and there ye can dock. Ye'r treasure lies 20 leagues down - don't belate, Speed on

Sometimes there'll be a line break in the middle of something relevant. Don't let that put you off!
 Well spend a while going over them on the next few pages.

First WHAT - then HOW!

Angles measure rotations

Angles measure rotations, how far you have to rotate a line so that it lies on top of another line.

You've probably already come across a common way of measuring angles - in degrees (symbol: ${ }^{\circ}$).

You measure angles with a protractor. It's marked off in degrees, so you can line it up and read off the size of the angle just like you would with a ruler.

In physics and math, you usually measure angles counterclockwise from the right.

An angle that comes up a lot in physics is the right-angle, which is $\mathbf{9 0}^{\circ}$. It's a quarter of a revolution, and it's the angle you find in the corners of a rectangle. So you see right-angles everywhere you go - between the ground and anything standing on it (chair, table, building, and so forth).

Half a revolution is $\mathbf{1 8 0}^{\circ}$, and it's called a straight angle. So anything that does a U-turn to go in the opposite direction has rotated 180°. It looks like a straight line.

There are 360° in a complete revolution - if you go all the way around, so the line ends up back on top of itself, that's an angle of 360°.
> $90^{\circ}=$ a right angle $180^{\circ}=$ halfway around $360^{\circ}=$ a full revolution

there are no Dumb Questions

Q:Why 360° in a full rotation? That seems a bit random. I mean - why not a nicer number like 100° or 1000° ? Doesn't that fit in better with SI units?

A:The rotation originated from ancient civilizations thousands of years ago. But the most practical reason is that 360 divides exactly by a lot of useful numbers.

Q:But that works just as well if there are 100 degrees in a circle. Half a rotation would be 50, and a quarter would be 25 ..
A: Yes, we were just getting to that. With 360° in a rotation, a third of a rotation is 120°, and a sixth is 60°. Now, try doing that with 100 degrees in a circle33.33333333... degrees in a third of a rotation, anyone?

Q: can you get angles bigger than 360° if something keeps on going round and round? Or does the angle 'reset' itself to 0° when you get back to where you started?

A:- It depends on what you're trying to do - sometimes talking about the total rotation is useful; other times 'resetting' the angle when you get back to the start is useful.

Q: is an angle a scalar or a vector?
A: Good question! It can be either, depending on whether you're talking about the total rotation (scalar) or the rotation distance between the start and finish points.

Q:Vectors are represented by straight arrows, where the length is proportional to the size. But how do you use a straight vector arrow to give the direction of an angle that's kinda curved?!
$A:$: Yes - you cant directly represent an angle using a vector arrow. It's a valid question, but you don't have to worry about it for the moment, as we'll get on to representing angular quantities with vector arrows in chapter 12.

Now you can get on with clue 3!

You've worked out that you need to start off facing East, and rotate counter-clockwise through an angle of 330°. Once you've done that, you'll travel 400 m in the direction you're now facing to reach clue 4 .

400 m on a bearing of 330 counter-clockwise from East is a displacement, not a distance, as it has both a size (400 m) and a direction (330° counter-clockwise from the East).

You can use an angle to indicate direction.

If you can't deal with something big, break it down into smaller parts

If you're measuring something with your ruler, and it's too long, you can start off by measuring along as far as you can. Then, you can make a mark, move the ruler along, and measure the next part. And so on.
The underlying principle is one that's essential for physics - especially when it gets more complicated! If something's too big for you to deal with it all at once, break it down into smaller parts that you can deal with.
There are two ways you can do this with a standard 180° protractor - do whatever you're most comfortable with:

You can use your protractor twice to break down the angle

You can do exactly the same as you would with a ruler, and use your protractor twice. It goes up to 180°, so measure that far first.

To work out how much further to go, you can say $330^{\circ}-180^{\circ}=150^{\circ}$, then measure around another 150° from where you stopped.

You can measure your angle the other way around

You can also say, " 330° is only 30° short of being a full 360° circle." So turning 330° counterclockwise is the same as turning 30° clockwise.

You move onto the fourth clue..

You got the angle right because Annie's found a sign sticking out of the water with the fourth clue on it!

Clue 4

The treasure is near, I hope you feel beckoned.

You can work out what things are from their context.

Sometimes an unfamiliar word comes With velocity $1.5 \mathrm{~m} / \mathrm{s}$ So nead to the North for the time of one minute. Arrive in the right place and you'll surely win it. But don't you forget, you already know - that sometimes you cannot just go with the flow... up. Whether it's completely new to you or something you saw once before then forgot about, the important thing is not to panic.

Often you'll be able to work out what it means from the context. What is the rest of the sentence or paragraph about? Are there any units mentioned? What is the rest of the question about? What are they asking you to do?
not seen yet in this book
velocity is a new term... is it okay to guess what it means?

Sharpen your pencil

See if you can work out what a velocity might be from the context.
If you already know what a velocity is, then write down how someone who doesn't could work it out from the context.
\qquad
\qquad
\qquad
\qquad

Clue 4

The treasure is near, I hope you feel beckoned. With velocity $1.5 \mathrm{~m} / \mathrm{s}$ So head to the North for the time of one minute. Arrive in the right place and you'll surely win it. But don't you forget, you already know - that sometimes you cannot just go with the flow...

Velocity is the 'vector version' of speed

Velocity is measured in meters per second - which is exactly the same units as speed. Velocity is the 'vector version' of speed - it has a direction as well as a size.

Speed is a scalar - "I'm traveling at $1.5 \mathrm{~m} / \mathrm{s}$."
Velocity is a vector - "I'm traveling North at $1.5 \mathrm{~m} / \mathrm{s}$."

So the clue is asking you to go North at $1.5 \mathrm{~m} / \mathrm{s}$ for a minute.

Write units using shorthand

You've spotted that the units of velocity are written as m / s in the clue. This is a more concise way of writing meters per second. The '/' means 'per' or 'divided by.'

Meters per second is the same as meters divided by seconds. So when you use the standard letters to abbreviate the units, you get m / s.

Now that you know that velocity is the vector version of speed, you tell Annie to point the boat North, set the controls to $1.5 \mathrm{~m} / \mathrm{s}$, and travel for a minute before dropping the anchor.

But when she arrives, there's no treasure.

You need to allow for the stream's velocity too!

Clue 3 took place entirely on a still lake. So when the boat was set to go at a certain velocity relative to the water, that was the velocity it went at.

Going North from the Clue 4 sign involves going downstream, towards the sea. If Annie didn't start the motor, the boat would move North with the same velocity as the stream.

Velocity seen from bank greater

 than boat speedo reading.But Annie did start the motor - and the boat moved North with a reading of $1.5 \mathrm{~m} / \mathrm{s}$ on its speedometer. But the speedometer tells you how fast the boat's going relative to the water. This means that Annie went faster than the clue said she should, at $1.5 \mathrm{~m} / \mathrm{s}$ plus the velocity of the stream.

If Annie had been going South, upstream, the boat and stream velocity vectors would point in different directions. So the overall velocity of the boat as seen from the bank would be less than the reading on its speedometer.

Stream velocity

If the upstream current was really, really fast, the boat would go backwards even if the reading on its speedometer said it was going forwards!

If you can find the stream's velocity, you can figure out the velocity for the boat

It's possible to add velocity vectors by lining them up nose-totail in the same way you added up the displacement vectors earlier on.

You know that the overall velocity of the boat needs to be $1.5 \mathrm{~m} / \mathrm{s}$ to the North. And Annie works out a way of measuring the velocity of the stream by dropping leaves in it. Now, you only need to do the calculation, send Annie on her way, and the treasure is yours ...

The boat needs to go North with an overall velocity of $1.5 \mathrm{~m} / \mathrm{s}$ for a minute.
a. If the leaves Annie throws into the stream travel 10 m North in 20 s , what's the velocity of the stream?
b. What speed should Annie set on the boat's speedometer to solve the clue and find the treasure? (You may find it helpful to use vector arrows to visualize this.)

The boat needs to go North with an overall velocity of $1.5 \mathrm{~m} / \mathrm{s}$ for a minute.
a. If the leaves Annie throws into the stream travel 10 m North in 20 s , what's the velocity of the stream?
b. What speed should Annie set on the boat's speedometer to solve the clue and find the treasure? (You may find it helpful to use vector arrows to visualize this.)
a. Leaves travel 10 m North in 20 s .

$$
\begin{aligned}
\text { Velocity } & =\frac{\text { Change in displacement }}{\text { Change in time }} \\
& =\frac{10 \mathrm{~m}}{20 \mathrm{~s}}=0.5 \mathrm{~m} / \mathrm{s} \text { North }
\end{aligned}
$$

b. Annie wants to go North at $1.5 \mathrm{~m} / \mathrm{s}$.

Stream will 'provide' $0.5 \mathrm{~m} / \mathrm{s}$ of this velocity. So the boat should go North at $1.0=\mathrm{m} / \mathrm{s}$ (relative to the stream).

A sketch makes

Dumb Questions

Q:So basically a vector is something I can draw as an arrow, right?

Yes - the length of the arrow represents the size, and the direction of the arrow represents the direction.

The overall velocity

 vector points in the direction the thing's currently moving in.Q :- I was fine with displacement, where the length of the arrow represents an ACTUAL length. But l'm kinda finding it hard to visualize a velocity.

A: something's overall velocity vector points in the direction that it's currently moving in. If it's going fast, you draw a long arrow, and if it's going slow, a shorter arrow.
$Q:$ - Right - so something going fast to the North would have a long arrow pointing North, and something moving slowly to the East would have a short arrow pointing East.

A: Exactly.

I get that - but I'm still not sure about what happens when the boat's trying to fight against a really fast current. How can the boat go backwards when its speedometer says it's going forwards.

A speedometer gives the velocity RELATIVE to the water. But you're interested in the velocity RELATIVE to the bank

Q: How do you mean? Surely the boat can only have one velocity?
A: The boat's speedometer tells you how fast it's going relative to the water. But if the water is also moving, then the boat's velocity vector, as seen from the bank of the stream, will be different. It points in the direction that the boat is currently moving in. The velocity of the boat as seen from the bank is equal to the boat's velocity relative to the water plus the water's velocity.

Q: But that doesn't make sense.
A : You know the moving walkway at the airport that helps you travel long distances more quickly? What happens if you turn around and start walking in the opposite direction of the walkway's motion? You start moving backwards relative to the rest of the building, but you're actually moving forwards relative to the walkway. The walkway moves you backwards more quickly than you're walking forwards.

It's the same with the boat and the stream.

So Annie goes North at $1.0 \mathrm{~m} / \mathrm{s}$ for 1 minute ...

... but doesn't find any treasure this time either.

It takes the boat time to accelerate from a standing start

 It's OK if you didn't think of the boat accelerating - this one was pretty tricky!

The boat spent part of the minute accelerating from $0 \mathrm{~m} / \mathrm{s}$ to $1.5 \mathrm{~m} / \mathrm{s}$...

If it had spent the WHOLE MINUTE traveling at $1.5 \mathrm{~m} / \mathrm{s}$, it would've gone even further.

Where the boat ended up with the standing start

But the treasure will be here instead.

How do you deal with acceleration?

Acceleration is the rate of change of velocity - if

something is accelerating, it means that its velocity is changing. Acceleration is a vector with a size and a direction.

If the boat is going forwards, and you open up the throttle, it accelerates in the same direction you're already going in. Its acceleration vector points forwards.

If a boat's going forwards, and you drop the anchor, it decelerates. You can think of this as acceleration in the opposite direction from the one it's already traveling in, so its acceleration vector points backwards.

Open up the throttle a little bit.

Acceleration is the rate of change of velocity.

Exercise

Draw the directions of the velocity vector and acceleration vector for each of these things, showing what they'll look like at the very moment when the acceleration that's described starts to happen.
We gave the acceleration vector a second arrowhead, so you can tell the difference between it and velocity or displacement vectors.

The boat is traveling forwards, and you open up the throttle.

The boat is going forwards, and you drop the anchor.

The duck is going from right to left, and it just hit the edge.

The boat is drifting backwards, and you open up the throttle.

The boat is going backwards, and you drop the anchor.

Your right, as you look straight at the duck, that is.
The duck is going forwards and is pushed by a current coming from the right.

Dumb Questions

Q: Isn't it confusing to represent the displacement, velocity, and acceleration all with arrows?
 A :
 - It's only confusing if you don't label your sketches with what's going on.

Q- How can the anchor make the boat accelerate when it slows it down?
A 1: The anchor changes the velocity of the boat. Acceleration is rate of change of velocity. So even slowing down is still an acceleration.

Q: But wouldn't that be a DEceleration then?!
A : the refe means the acceleration and velocity are in opposite directions. So when you do math, the acceleration and velocity vectors will have opposite signs.

Q: Ah math, lovely. Shouldn't I know the units of acceleration to do that?

A:- Acceleration is the rate of change of velocity. You'll work out the units in chapter 6 ; right now, we're just dealing with the concept.

So it's back to the boat ...

You told Annie to start at the Clue 4 sign, set the controls for $1.0 \mathrm{~m} / \mathrm{s}$, and go North for a minute. But because the boat took time to accelerate from a standing start, it didn't go the whole way at $1.0 \mathrm{~m} / \mathrm{s}$, and Annie ended up in the wrong place.
Now that you know that the boat's acceleration could be a problem, how are you going to guide Annie to the treasure?

Sharpen your pencil

Can you think of how to make sure Annie ends up where the treasure is?
Draw / write / explain / calculate in the space below.

We're not telling you which of these you'll have to do - that's up to you! The main thing is to explain your idea as clearly as possible.

Clue 4

The treasure is near, I hope you feel beckoned With velocity $1.5 \mathrm{~m} / \mathrm{s}$ So head to the North for the time of one minute. Arrive in the right place and you'll surely win it. But don't you forget, you already know - that sometimes you cannot just go with the flow...

Sharpen your pencil
 Solution

Can you think of how to make sure Annie ends up where the treasure is?
Draw / write / explain / calculate in the space below.

You can do this by working out the DISPLACEMENT.

The boat needs to travel at $1.5 \mathrm{~m} / \mathrm{s}$ for 60 s to reach the treasure.
$\ln 1 \mathrm{~s}$, the boat travels 1.5 m .

So in 60 s , the boat travels $1.5 \times 60=90 \mathrm{~m}$
So tell Annie to go 90 m North of the clue 4 sign.
If you forget a formula, you'll often
be able to work it out using common
sense, like this. So don't panic!

You can also do this with a 'rolling start.'

If the boat's ALREADY going at the correct velocity when it passes the clue 4 sign, then going for a minute, as per the clue, will work out fine.

Boat has
reached $1.5 \mathrm{~m} / \mathrm{s}$

That's right - there may be more than one way of doing something.

Sometimes there's more than one approach to a problem, and each approach will lead you to the same answer.

This is the case for mathematical problems where there are multiple equations you can use to solve them, or there may be a shortcut you can take that'll save you time.

This is especially true of the problems that ask you to design an experiment and allow you to use a lot of equipment to do it. There will usually be several different set-ups that'll work, and it's up to you to design, draw, and describe what you want to do.

Problem Solving 101: Understand WHAT's going on, then work out HOW to do it.

Vector, Angle, Velocity, Acceleration = WINNER!!!

Clue 1

Direction is important.
Displacement is the 'vector version' of distance. It has both a size and a direction. You can represent opposite directions using vector arrows or math signs.

Clue 2

You can add vectors that don't lie along a straight line by drawing them out and adding 'nose-to-tail.'
It doesn't matter which order you add vectors in as long as you line them up 'nose-to-tail.'

Clue 3

In physics, you measure angles counter-clockwise from the horizontal.

Clue 4

Velocity is the 'vector version' of speed. It has both a size and a direction.
You can add velocity vectors by lining them up 'nose-to-tail.'

Be careful about what a velocity is relative to; for example, a boat's velocity could be relative to the stream or the bank.

Vectors (or displacement) are sometimes more useful than scalars (or distance).

Sometimes it's appropriate to use scalars, and sometimes it's appropriate to use vectors.

For example, if you want to know how much gas you'll use for a round trip, knowing that the vector displacement is zero doesn't help - it's the distance you're interested in. But if you want to know the shortest route between two points, then vectors are the best.

There are also other things that you haven't met properly yet - scalar quantities that don't have a vector equivalent and vector quantities that don't have a scalar equivalent. But no worries, you'll get to some of them in later chapters.

It's up to you to decide which is best for any situation. ran' rip, knowing hat he vector displacemed

Sometimes it's appropriate to use vectors. Sometimes it's appropriate to use scalars.

Sharpen your pencil

Here's a map of one of Alex's pizza deliveries from the pizza shop to a customer's house.
a. Draw his route to show his overall distance, and draw a vector arrow to show his overall displacement.
b. Draw vector arrows to represent his velocity at each of the X's on the road.
c. Explain why it was more appropriate to use distance and speed to deal with Alex rather than displacement and velocity.
\qquad
\qquad
\qquad
\qquad

Sharpen your pencil

Solution

Here's a map of one of Alex's pizza deliveries from chapter 3.
a. Draw his route to show his overall distance, and draw a vector arrow to show his overall displacement.
b. Draw vector arrows to represent his velocity at each of the X's on the road.
c. Explain why it was more appropriate to use distance and speed to deal with Alex rather than displacement and velocity.

Alex can't go directly through buildings or duckponds works - but the displacement vector does.
So it would be silly to talk about displacement instead of distance.
And he always covers the distance at the same speed even though the direction of his velocity changes. So there's no point in talking about velocity either:

You only use distance and speed if direction isn't important.

Your Physics Toolbox

You've got Chapter 5 under your belt and added some terminology and math skills to your toolbox.

First what, then how

Before you start to work on a problem, work out what it is you're supposed to be doing.
Go through the question and underline the important parts.
Only think about how you'll do the problem once you've worked out what they're looking for.

Math with vectors

Add vector arrows by lining them up "nose-to-tail."

> OR

If your vectors all lie along the same line, define one direction as positive and the other as negative.
Add the sizes of the vectors, making sure you get the signs correct.

Measuring angles

In physics, you measure angles counter-clockwise from the horizontal.
You can measure angles greater than 180° with your protractor either by thinking of how much greater than 180° the angle is, or how much less than 360° it is.

Direction of velocity and acceleration vectors

An object's velocity vector points in the direction it's currently moving in.
An object's acceleration vector points in the direction the velocity is currently changing in. If the velocity is being changed by a push, the acceleration vector points in the direction of the push.

You're right. Experiments are valuable tools for observation.

The next few pages will show you an experimental design set-up...but put yourself in the problem, and try it on your own first. Don't worry, you already know more than you think you do.

An electromagnet is a magnet
that can be switched on and
off using electricity.

You have a steel ball-bearing, a tape measure, a timer, and an electromagnet that you can rig to switch off when the timer starts. Your challenge is to design an experiment which will enable you to draw a graph of displacement vs. time for a falling object.
a. List any additional equipment you would like to use.

Don't be afraid to try this! The next few
pages will take you through it ... but you
already know more than you think you do!
b. Draw and label a diagram of your experimental design.
c. Briefly describe how you would carry out your experiment. You should mention what measurements you will make, and how you will use them to draw graphs that will show you a value for the displacement at any time.

Question Clinic: The "Design an experiment" Question

 available equipment, and may say that additional items are available if you can think of any you'd like to use.
6. You hal f a steel bali-bearing, a tape measure, a timer and an electromagnet that you can rig to switch off when the timer starts. Your challenge is to design an experiment which will enable you to draw a graph of displacement vs. time for a falling nh느․).
a. List any additional equipment you would like to use.
b. Draw and label a diagram of your experimental design.

If you're plotting any graph involving time, then time should be on the horizontal axis.

These types of questions also contain buzzwords that tell you exactly what you're supposed to do. So be careful - if it says 'draw' and you don't, you'll automatically lose points!

Match each term to its description, which says what you have to do when you answer the question.

Term
design
describe how you would carry out ...
draw a graph
label
measurement
a value for ...
draw a diagram

Description that says what you have to do
A number with units. The reason you're doing your experiment - you can work it out from your results.

Words that say how you set up your experiment.

Annotation with arrow describing part of a drawing.

Make a picture of how the equipment you're using works together.

Make a plot of one set of measurements against another set of measurements.

Words that say what you do with the equipment you've set up.

A number, with units, that you read from a scale or a meter in the course of your experiment.

+DOES WMAT?

Match each term with its description, which says
what you have to do when you answer the question.

6. You have a steel ball-bearing, a tape measure, a timer. and an electromagnet that you can rig to switch off when the timer starts. Your challenge is to design an experiment which will enable you to draw a graph of displacement vs. time for a falling object.

Sharpen your pencil

Here are all the pieces of equipment mentioned in the question. Your job is to write down what quantity you can measure with it, and what you can do with it in the experimental setup.

You should also write down what it is you're being asked to find by doing your experiment, plus any relationships between the units of what you can measure and what you're being asked to work out.

Piece of equipment	What can you measure / do with it?
Steel ball-bearing	
Tape measure	
Timer	
Electromagnet	

What I'm supposed to do:

Relationships between what the items in the table can measure and what l'm being asked to work out:

Any other equipment you'll need to be able to do the experiment:

If you have a list of equipment, ask yourself: "What can I D0 with this stuff?" and "How can these items work together?"

Here are all the pieces of equipment mentioned in the question. Your job is to write down what quantity you can measure with it, and what you can do with it in the experimental setup.

You should also write down what it is you're being asked to find by doing your experiment, plus any relationships between the units of what you can measure and what you're being asked to work out.

Piece of equipment	What can you measure / do with it?
Steel ball-bearing	I can drop it so that it falls downwards.
Tape measure	I can measure the height that the ball-bearing falls from.
Timer	I can time how long the ball-bearing takes to fall.
Electromagnet	It can hold the ball-bearing then drop it when it switches off. The timer starts when the magnet switches off.

What I'm supposed to do

Relationships between what the items in the table can measure and what l'm being asked to work out:

Any other equipment you'll need to be able to do the experiment:

Draw a graph of displacement vs. time.
I can measure displacement (m) with the tape measure and time (s) with the timer.

Something to hold the electromagnet. And a way to stop the timer when the ball lands.

Look at the UNITS of what you can measure and what you're being asked to work out. How do they relate to each other?

This particular question asks if you'd like to use any other equipment. So do the 'ideal world' test - in an ideal world, what would you need to measure the values as accurately as possible? Then, you actually need to design the experiment in your head before you can describe, draw, or label it!

You need extra equipment to stop the timer and to hold the electromagnet

You can measure displacement and time using the tape measure and timer. And the question says that the electromagnet can be rigged up to release the ball-bearing when the timer starts.

All you need then is to stop the timer when the ball lands - which will need an extra piece of equipment, for instance a switch plate rigged up to stop the timer when the ball lands on it.

Sharpen your pencil

Is the experimental setup you now have in mind similar to what you drew at the start, or is it different?
If it's different, draw and label a diagram of your new experimental setup, and explain how you'll use it to make measurements and draw a graph that shows you a value for the displacement at any time.

You might not have any changes, and if you don't...that's okay too...

Sharpen your pencil Solution

Is the experimental setup you now have in mind similar to what you drew at the start, or is it different?
If it's different, draw and label a diagram of your new experimental setup, and explain how you'll use it to make measurements and draw a graph that shows you a value for the displacement at any time.

You might not have any changes, and if you don't...that's okay too...

Make sure you include labels so it's clear what everything is.

Use the clamp stand and the tape measure to set the height of the ball-bearing. Time how long it takes to fall from that height using the timer, electromagnet and switch plate. Use a range of heights, from the smallest the timer can measure to the height of the ceiling, and several heights in between as well. And time each height two or three times to reduce random errors.
Then, plot a graph with the time along the horizontal axis and the distance up the vertical axis. Draw a smooth line through the data points. The graph lets you read off the time it'll take for the ball-bearing to fall any distance.

On your graphs, time should always be along the horizontal axis.
 question in it.

- You will be given a list of equipment. what it asks you to do.
- If the question asks you to design, describe, draw, label or explain, that's what you get points for!
- You may find it useful to jot down what you can measure or do with each piece of equipment to get your creative juices flowing.
- Remember to explain clearly what you'll do in your experiment - how you'll use your equipment, and what you'll plot on a graph.
- If you're plotting a graph, time always goes along the horizontal axis.

> Remember to explain clearly what you'll do in your experiment!

6 Displacement, Velocity, and Acceleration

* What's going on? *

It's hard to keep track of more than one thing at a time.

When something falls, its displacement, velocity, and acceleration are all important at the same time. So how can you pay attention to all three without missing anything? In this chapter, you'll increase your experiment, graph, and slope superpowers in preparation for bringing everything together with an equation or two.

Just another day in the desert ...

and another Dingo-Emu moment!

Every year it's the same. The Dingo wants to invite the Emu to his birthday party - but the daft bird won't stop running for long enough for him to deliver the invitation. So this year, the Dingo's decided that extending a paw of friendship needs drastic measures. He's hired a crane, and wants to push a cage off the platform the moment the Emu rounds the bend. But is this practical? What height does the platform need to be, and will the cage be able to handle hitting the ground at a high speed?

So the Dingo calls the crane company's customer service department to ask some questions ...

Crane Company Magnets

The crane company gets to work on the problem. But we accidentally dropped their memo and some of the words fell off. Your job is to put them back in the right places. You might use some magnets more than once, and some not at all.

Also, underline the most important parts in the memo to separate the important stuff from the fluff - the wheat from the chaff.

Crane Company Magnets - Solution

The crane company gets to work on the problem. But we accidentally dropped their memo and some of the words fell off. Your job is to put them back in the right places. You might use some magnets more than once, and some not at all.

Also, underline the most important parts in the memo to separate the important stuff from the fluff - the wheat from the chaff.

To: Dingo
 Re: Cage

set up the crane and target

cage falls at the same time as the
 rounds the corner. If we work out the
distance
the cage falls in the
 it takes the Emu to run $\square 30 \mathrm{~m}$, we can set the crane to that height and take home a fat $($ commission). Be careful - the cage is only guaranteed if it hits the ground at \qquad
\rightarrow NOTES

What time does the cage fall for?

These didn't get used because the units are wrong.
velocity
The Emu's speed, rather than his velocity, is important, as the road is curved.

Which of these would you try to work out first?

How can you use what you know?

The Dingo drops the cage as soon as the Emu rounds the corner. Then, the cage falling and the Emu running both take the same time to reach the target.

The time that the Emu takes to arrive depends on the speed he runs at and the distance he covers from the corner to the target. As the Emu always runs with a constant speed, you already know an equation you can use to do this.

Once you know the time it takes the Emu to arrive, you'll have to figure out how far the cage falls during that time. This will give the Dingo the height that he needs to set the platform at.

However, if the cage travels faster than $25 \mathrm{~m} / \mathrm{s}$ in the time it takes for the Emu to reach the target, this plan won't work because the cage will hit the ground and be destroyed upon impact.

You haven't dealt with falling
things yet - but don't worry,
that's what this chapter's about!

Sharpen your pencil

First things first. Work out the time it takes the Emu to cover 30 m from the corner to the target at a speed of $54 \mathrm{~km} / \mathrm{h}$.
Hint: You'll need
7
to convert units.

1

Sharpen your pencil Solution

Work out the time it takes the Emu to cover 30 m from the corner to the target at a speed of $54 \mathrm{~km} / \mathrm{h}$.

This symbol means 'implies that'. You can use it going from one line to the next as you rearrange an equation.

Convert units: km / h to m / s

After stringing together conversion factors, you're left with meters on the top and sec ends on the bottom $-\mathrm{m} / \mathrm{s}$.

Work out the time it takes:

$$
\begin{aligned}
& \text { the time it takes: } \\
& \text { speed }=\frac{\Delta \text { distance }}{\Delta \text { time }}
\end{aligned} \begin{aligned}
& \text { Equation comes from the units } \\
& \text { of speed. Meters per second is } \\
& \text { a distance divided by a time. }
\end{aligned}
$$

If you don't feel so confident about stringing them together, you can do the units conversion one step at a time. That's fine too.

The problem gave numbers with 2 significant digits to work with, so your answer should have 2 sd.

The Emu takes 2.0 seconds to reach the target - so the cage needs to take 2.0 seconds to reach the target as well.

NOTES

What time does the cage fall for? The cage falls for 2.0 s .
What height should the crane be?
Will the cage be going faster than $25 \mathrm{~m} / \mathrm{s}$ when it hits the ground?

2.0 s to fall from the crane.

Don't be afraid

 to start out doinga question, even if you're not quite sure what direction it's going to take.

Don't worry - you've already made progress.

When you started out, you knew a couple of facts about the Emu's speed and the distance he covers - but nothing at all about the cage or the crane platform.

Now we need to figure out how fast the cage is going when it hits the ground after 2.0 s and the distance it falls in that time.

BE the cage

Your job is to imagine that yourre the cage.
What do you feel at each of the points in the picture? Which direction are you moving in? Are you speeding up or slowing down? Why are you moving like this?

We're going to talk about the cage's displacement and velocity, as the DIRECTION is starting to become important - the cage isn't being launched up into the air, just dropped!

The cage accelerates as it falls

You've spotted that the cage accelerates as it falls. Acceleration is the rate of change of velocity. You can tell that the cage is accelerating because its velocity is continually changing. It starts off with zero velocity, then gets faster and faster until it hits the ground.
With that in mind, it's on to working out the cage's velocity after 2.0 seconds and its displacement in that time so that the Dingo knows whether the idea's a starter - and if so, how high to make the platform.

> You know that something is accelerating if its velocity is changing.

-Displacement, Velocity, and Acceleration Up Close

Displacement is the 'vector version' of distance and is represented by the letter \mathbf{x} in equations (or the letter \mathbf{s} in some courses).

Velocity is rate of change of displacement - the 'vector version' of speed. It is represented by the letter \mathbf{v} in equations.

Acceleration is rate of change of velocity, represented by a, and doesn't have a scalar equivalent. If an object's velocity is changing, you need to know which direction the velocity is changing in for the statement to have meaning. Otherwise, you don't know if the object's speeding up, slowing down, or changing direction - which are all ways that an object's velocity can change.

'Vectorize' your equation

You've already used the equation
speed $=\frac{\Delta \text { distance }}{\Delta \text { time }}$ to work out that it takes
the Emu 2.0 seconds to reach the target. Δ means
The 'vector version' of this equation is 'change in'

$$
\text { velocity }=\frac{\Delta \text { displacement }}{\Delta \text { time }}, \text { or } \mathbf{v}=\frac{\Delta \mathbf{x}}{\Delta t}
$$

It's fundamentally the same, except that it involves velocity and displacement instead of

We're using bold letters, like \mathbf{x} and \mathbf{v}, to represent vectors and italic letters, like t, to represent scalars.

So we need to work out the displacement of the cage after 2.0 seconds. That doesn't sound too bad.

Jim: We also need to work out what its velocity will be when it hits the ground. If that's more than $25 \mathrm{~m} / \mathrm{s}$, then the cage will shatter.

Joe: Why don't we work out the velocity first? That way, if it turns out that the cage is going too fast after it's been falling for 2.0 seconds, we won't have to bother working out the displacement as well.

Frank: Sounds good. I'm all for spotting shortcuts!
Jim: Well, we've done something similar before with that cyclist who rode everywhere at the same speed. Can't we use the equation $\mathbf{v}=\frac{\Delta \mathbf{x}}{\Delta t}$ to work out the cage's velocity
Frank: Yeah, let's just use that equation! We want to know the velocity, and that equation says " $\mathbf{v}=$ " on the left hand side. \mathbf{v} for velocity. It's perfect!

Joe: Um, I'm not so sure. The cage doesn't have the same velocity all the time - it accelerates as it falls.

Jim: But we can still use that equation, right? If we work out the displacement, we can divide it by the time to get the velocity.

Joe: I don't think so. If the cage always had the same velocity, then, fair enough, that would work. But the cage's velocity is always changing because it's accelerating - it isn't constant. We want to know what its velocity is at the very end, as it hits the ground.
Frank: Oh ... and when it hits the ground, it's only been traveling at that velocity for a split second.
Jim: Yeah, as it gets closer to the ground its velocity increases, so it covers more and more meters per second. If we divided the total displacement by the total time, we'd get the cage's average velocity.

Joe: But we need to know what the velocity is the instant it hits the ground. An average velocity's no good to us.
Frank: I guess we need to do something different ...

If you calculate the cage's velocity first, you won't have to bother calculating its displacement if it turns out that the cage will break.

NOTES

NEVER blindly stick numbers into an equation. Always ask yourself "What does this equation MEAN?"

You want an instantaneous velocity, not an average velocity

The equation $\mathbf{v}=\frac{\Delta \mathbf{x}}{\Delta t}$ works fine if you have something traveling at a constant velocity. But the cage gets faster and faster as it falls - and you want to know what its velocity is the instant it hits the ground.
The best you can do with the equation is to work out the cage's average velocity, which is the constant velocity it would need to travel with to cover that displacement in that time. But since the cage isn't traveling with a constant velocity, this value won't help you out.

As its velocity increases, the cage's displacement is greater in the same amount of time. This vector represents the velocity of the cage just before it hits the ground. The length of the vector represents the size
This is the graph for the cyelist in chapter 4. of the velocity. Don't be put off by it appearing to go 'into' the target.

Strictly speaking, you used distance and speed rather than displacement and velocity, but the principle is the same. You've previously used the equation $\mathbf{v}=\frac{\Delta \mathbf{x}}{\Delta t}$ to work out the average velocity of a cyclist who was slowed down by stop lights, and it gave you the slope of a straight line between the start and end points of his displacement-time graph. Using the slope of his displacement-time graph at that point, you were also able to work out his instantaneous velocity at any point.

How might you try to work out a value for the instantaneous velocity of the cage just before it hits the ground.

So could we draw a displacement-time graph for a falling thing, and calculate its slope at $t=2.0 \mathrm{~s}$ to get its instantaneous velocity? Will that part still work?
0

As the cage doesn't fall with a constant velocity, the best you can do with the equation $\mathbf{v}=\frac{\Delta \mathbf{x}}{\Delta t}$ is work out its average velocity - which isn't what you want. You can't reuse this equation to work out the cage's instantaneous velocity because the context is different.

But you can use the same method even if you can't directly reuse the same equation. If you draw a displacement-time graph for a falling thing and are able to calculate its slope at $t=2.0 \mathrm{~s}$, this will give you the instantaneous velocity of the cage. As long as you understand the physics, you can work out how to do a problem even if you can't directly use an equation you already know.
Though you still need to design the experiment...

Sharpen your pencil Solution

When you carry out the experiment with the falling ball-bearing, electromagnet, and timer that you designed earlier, you get the results shown in the table.

Use these measurements to draw a displacementtime graph for the falling ball-bearing.
(Don't worry about calculating the slope of your graph for now - you'll do that next.)

It's important to mention

Displacement of ball (m)	Time 1 (s)	Time 2 (s)
0.10	0.142	0.150
0.25	0.228	0.224
0.50	0.316	0.319
0.75	0.387	0.390
1.00	0.456	0.451
1.50	0.552	0.556
2.00	0.639	0.637
2.50	0.712	0.712
3.00	0.779	0.782

Displacement
Plot of displacement vs. time for falling ball-bearing

Remember to include the point
$(0,0)$ - the ball-bearing has
zero displacement at $t=0$.

So if our points obviously don't lie along a straight line, we shouldn't try to force them onto one?

> Never play connect the dots' with your points. Always use a smooth line (whether it's straight or curved).

Look at where the points are to work out what type of line to draw

If your points look like they ought to lie along a straight line, then draw a straight line that passes as close to as many points as possible.

If your points look like they ought to lie along a curve, then draw a smooth curve that passes as close to as many points as possible.

But never play 'connect the dots'!
there are no

Dumb Questions

Q:So ... why am I drawing a displacement-time graph when I want to know the cage's velocity after 2.0 s?
A : You can use the displacement-time graph to get the cage's velocity after 2.0 s .

Q:But what does velocity have to do with displacement?
A : Velocity is rate of change of displacement. That means that the slope at a point on a displacement-time graph is the same as the velocity at that point.
Q: Velocity and displacement are vectors, right? Do I have to write them in bold letters like in the book?
A : Not if you're just handwriting them. We've made the vectors bold so you get used to thinking of them the right way, but you don't have to do that in your solutions.

Q:Why does the slope of a graph matter? How does it help me?
A: : The slope of a graph is the change in the vertical direction divided by the change in the horizontal direction. On a displacement-time graph, displacement is on the vertical axis, and time is on the horizontal axis.

So the equation for the slope gives you change in displacement divided by change in time - which is the same as the equation for velocity.

Q:OK, so I see why the displacementtime graph is important. But why haven't I drawn a straight line on it this time?

A:: Last time, the points on your graph lay along a straight line. But this time it's obvious that they don't.

Q: so should I mimic a spreadsheet program, using my ruler to draw straight lines from point to point?

A:: No, not in physics. The cage doesn't move jerkily from point to point - it moves smoothly. So you should draw a smooth line that goes as close to as many of the points as possible.

Q:OK, so the displacement-time graph is curved. I can work out the slope of a straight line graph, it's $\frac{\Delta \mathrm{X}}{\Delta t}$.
But how can I work out the slope of the curved graph when it won't "sit still" for long enough for me to work out $\frac{\Delta \mathbf{x}}{\Delta t}$ for a straight portion?

A: - Funny you should ask ...

You already know how to calculate the slope of a straight line...

In Chapter 4, you calculated the slope of a straight line graph by picking two points on it, and calculating $\frac{\Delta \text { vertical direction }}{\Delta \text { horizontal direction }}$. If the graph is plotted with displacement, \mathbf{x}, on the vertical axis and time, t, on the horizontal axis, this expression for the slope becomes $\frac{\Delta \mathbf{x}}{\Delta t}$, which is the velocity.

$$
\begin{array}{l|l}
\begin{array}{l}
\text { Velocity } \\
\text { is rate of } \\
\text { change of }
\end{array} & \text { Slope }=\frac{\Delta \mathrm{x}}{\Delta t} \\
\text { Slope }=\text { Velocity }
\end{array}
$$ displacement with time.

Slope $=\frac{\Delta \text { vertical direction }}{\Delta \text { horizontal direction }}$

We haven't put units on the axes because the graph would still be the same SHAPE whatever the units may be.

Graph of displacement vs time

A point on a curved line has the same slope as its tangent

You can calculate the slope at a point on a curved graph by drawing a tangent. This is a straight line that touches a curve at only that point without crossing the curve.

This means that the tangent has the same slope as the curve at that point - so calculating the slope of the tangent tells you the slope of the curve at that point.

A tangent is a line that touches a curve at one point without crossing it.

Dumb Questions

Q: Isn't a tangent something to do with circles?

A: InIn this context, a tangent is a straight line that touches a curve at one point but doesn't intersect it. The tangent has the same slope as the curve at that point. You can also talk about a tangent to a circle - a straight line that touches it at one point.
Q Q.
Aren't there tangents in trigonometry as well?
A:
'Tangent' means something different in the context of trigonometry. The definition there is related to this one. You'll learn more about the other meaning in chapter 9.

Q: point and use it to work out the velocity at that point?

A:- Yes - the slope of a displacement-time graph gives you the rate of change of distance with time, which is the same as the velocity.

Q:

- But the graph l've drawn only goes up to 0.78 s, and I want to know the velocity after 2.0 s . Do I have to extrapolate my graph out to 2.0 s or something?

A: : Let's try it ...

So that was a dismal failure. We drew a displacement-time graph just like we did before, but it's ended up curved, and we can't extrapolate. Physics stinks.

Joe: But our curved graph looks very plausible. If the ball-bearing's getting faster as it falls, then its displacement in the same amount of time will keep on getting larger. Look:

Frank: OK, so maybe it's not a total disaster. But we still need to work
 out the cage's velocity after two seconds. I don't see how we can do that - without dropping the actual cage from a distance high enough to make it fall for 2.0 s . That sounds tough. Even in a room with a 3 meter ceiling, we didn't get the ball-bearing to fall for more than 0.78 seconds.

Joe: We can't keep on dropping the cage - we might break it, which is what we're trying to avoid! Plus there'd be the repair bill for the road.

Jim: Hmmm. When we were drawing a displacement-time graph for a cyclist, we didn't ever need him to ride long distances, just short ones.

Frank: That's because we were able to extrapolate his displacementtime graph. But we already said we can't do that here!
Jim: The last time we drew a displacement versus time graph, we calculated its slope to work out the pizza guy's velocity. And then we used that in an equation to work out his time for any distance.
Frank: But here the velocity's changing - it doesn't have one single value. We already said we can't use the equation we worked out then.
Joe: But what if we use the slope of our displacement-time graph at various points to plot a velocity-time graph? If it's a nice shape, we might be able to extrapolate it and use it to get the velocity after 2.0 s
Jim: Yeah, if we draw some tangents on our displacement - time graph, we could do that. It might just work ...

Sharpen your pencil

You want to plot the velocity-time graph for the ball-bearing. You can get values for its velocity at various points in time from the slope of your displacement-time graph at each point in time. As this is a curved graph, we've already selected some regularly-spaced points on it and sketched in their tangents for you.
a. Fill in the table by choosing two points on each tangent and working out its slope - and, therefore, the velocity of the ball-bearing at each point.
b. Use the velocities you've calculated to plot the velocity-time graph for the ball-bearing. You'll need to write in all the labels yourself and choose your own scale for the vertical axis.

This is Δx	This is Δt
between two	between two
points you pick	points you pick
on the tangent.	on the tangent.

a.

Time at point (s)	$\left(\begin{array}{l}\mathrm{x}(\mathrm{m})\end{array}\right.$	Velocity $=\frac{\Delta x}{\Delta t}(\mathrm{~m} / \mathrm{s})$	
0.00			
0.20	$1.65-0.00=1.65$	$0.95-0.10=0.85$	$\frac{1.65}{0.85}=1.94(3 \mathrm{sd})$
0.40			
0.60			
0.76			

b.

You'll need to
pick a suitable scale for your vertical axis.

a.

0 。

Jim: That looks, hmmm, nice. I'm starting to find straight lines strangely comforting, like they're somehow meant to be.

Frank: But what now? We still need to work out what the velocity will be after 2.0 s . Our graph only goes up to 0.78 s .
Jim: We can always extrapolate the graph out to 2.0 s and read off the velocity. It's OK to extrapolate straight line graphs!

Joe: Yeah ... but it would be kinda nice to come up with an equation if we can, so we can quickly work out the velocity at any time. Like, what if the Dingo wants to put the crane somewhere else?

Frank: With the cyclist, we used the slope of his displacement-time graph to work out the equation $\mathbf{v}=\frac{\Delta \mathbf{x}}{\Delta t}$.
Jim: The cyclist's displacement-time graph was a lovely straight line, like this one. Except this is a velocity-time graph. I wonder if we can use it to work out an equation in a similar way.
Joe: Well, the slope of the velocity-time graph will be $\frac{\Delta \mathbf{v}}{\Delta t}$ because velocity is on the vertical axis this time. So the slope would be the rate of change of velocity ...
Frank: Hey! Didn't we say before that the acceleration is the rate of change of velocity? So we can use the slope to get the equation $\mathbf{a}=\frac{\Delta \mathbf{v}}{\Delta t}$.
Jim: Ooh - because it's a lovely straight line graph, the slope is constant. So the acceleration must be constant. Which means we can use the graph to calculate the acceleration - then use the acceleration to work out the velocity after any time!

The slope of a

 'something'-time graph tells you the rate at which the 'something' changes with time.

The slope of something's velocity-time graph lets you work out its acceleration

Acceleration is rate of change of velocity with time. So the slope of a velocity-time graph is the acceleration.

The pizza guy goes at a constant velocity, so his displacement-time graph has a constant slope. His velocity-time graph is a flat line, as his velocity is constant at all times. The slope of his velocity-time graph is zero, so his acceleration is zero.
The falling thing's velocity-time graph is a straight line with a constant slope. As acceleration is rate of change of velocity, this means that it has a constant acceleration, equal to the slope of the velocity-time graph $\mathbf{a}=\frac{\Delta \mathbf{v}}{\Delta t}$.

The slope of a

 velocity-time graph is the acceleration.

there are no
 Dumb Questions

Q:
Why do the graphs over there on the opposite page not have any numbers or units on them?
A: - Because these are 'sketch graphs' where the shape is the most important thing. The $\mathbf{x}-t, \mathbf{v}-t$ and $\mathbf{a}-t$ graphs for something with a constant velocity will always have the same shape, no matter what that constant velocity is. Same goes for anything with constant acceleration.

You'll sometimes see graphs like this on an exam - these allow you to show that you understand physics principles by choosing, drawing, or explaining the shape of a graph.

Q:I don't get why Alex's accelerationtime graph is a flat line.

A:- Alex cycles with a constant velocity. So at each point in time, his velocity is always the same. So the graph doesn't go up or down - the value stays the same.

Q:And how do you get from that to 'zero value' for the acceleration?

A:: Acceleration is rate of change of velocity. The velocity-time graph shows that his velocity isn't changing. So his acceleration must be zero.

QOK, I think I get Alex's graphs now. But I'm still puzzled about how the falling thing's displacement-time graph turned into a straight line velocity-time graph.
A: Velocity is the rate of change of displacement. As the curve gets steeper, its slope gets larger. So you know that the velocity increases as time goes on, and the velocity-time graph you just drew showed that the increases form a straight line.

Q: so, what are the units of acceleration, anyway? Surely I need to know that to be able to do calculations?
: Funny you should ask ...

Work out the units of acceleration

Velocity is rate of change of displacement, in other words how something's displacement varies with time. You already worked out that its units are meters per second (m / s).
Acceleration is rate of change of velocity, or how something's velocity varies with time. Although you've met acceleration as a concept before, you now need to deal with acceleration in calculations. Which means that you need to know about its units.

Fill in the blanks in the table to work out the units of acceleration.
Quantity is rate of change of Units of the changing thing Units of time Hint: It's easiest to write the units as fractions to work them out before changing them to the 'inline' style of m / s at the very end. Velocity Displacement Units of quantity
Acceleration

Fill in the blanks in the table to work out the units of acceleration.

Think of $\mathbf{m} / \mathbf{s}^{\mathbf{2}}$ as (meters per second) per second
Velocity is the rate of change of displacement, so its units are meters per second, or m / s.

Acceleration is the rate of change of velocity, so its units are
[velocity] per second, or meters per second per second, or $\mathrm{m} / \mathrm{s}^{2}$.
This might seem weird at first, as m^{2} is a visible area in 'square meters,' but there's no such thing as a 'square second'! But if you instead think of the units as (meters per second) per second, it makes a lot more sense.

Square brackets around something is shorthand for 'units of'. So [velocity] means 'units of velocity'.

The units of acceleration are m / s^{2}, or (meters per second) per second. pere' menans divided by

Sharpen your pencil

a. Use your velocity-time graph to get a value for the acceleration of a falling object.
b. Use that to work out the cage's velocity when it's been falling for 2.0 s . Is this less than $25 \mathrm{~m} / \mathrm{s}$?

There's space down here
for you to show your work.
you are here
229

a. Use your velocity-time graph to get a value for the acceleration of a falling object.
b. Use that to work out the cage's velocity when it's been falling for 2.0 s . Is this less than $25 \mathrm{~m} / \mathrm{s}$?

Success! You worked out the velocity after 2.0 s - and the cage won't break!

You've just worked out that the cage will be going at $20 \mathrm{~m} / \mathrm{s}$ after 2.0 s , so the cage won't break. - and the Dingo will be able to stop the Emu for long enough to deliver his party invitation! You got here by designing an experiment, which let you draw the displacement-time graph for a falling object.

Then, you used the slope at various points of the displacement-time graph to draw a velocity-time graph.

Then, you used the slope of the velocity-time graph to calculate a value for the acceleration due to gravity, $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Finally you used that value in the equation $\mathbf{a}=\frac{\Delta \mathbf{v}}{\Delta t}$, which you rearranged to calculate the cage's velocity.

The velocity is less than $25 \mathrm{~m} / \mathrm{s}$, so the cage won't break.

The Earth's gravity accelerates falling objects at a constant rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

there are no
 Dumb Questions

Q: I've seen values of $10 \mathrm{~m} / \mathrm{s}^{2}$ or $9.81 \mathrm{~m} / \mathrm{s}^{2}$ for acceleration due to gravity used in other books. These values are both close to $9.8 \mathrm{~m} / \mathrm{s}^{2}$ but...
A: : The AP Physics B table of information gives the value of acceleration due to gravity as $9.8 \mathrm{~m} / \mathrm{s}^{2}$. That's what we're going to use in this book.

Q:But surely I should practice with the value I'll use in my exam?
A: : Yes, that'll be fine. Your answers won't work out too different from ours, and the exact value you're supposed to use will become second nature to you.

Q:I'm worried about the AP B multiple choice exam though. Doing calculations involving 9.8 without a calculator is a bit time-consuming, to say the least!

A: That's right - in the AP B multiple choice exam, you need to do mental arithmetic because you're not allowed to use a calculator. But at the start of the multiple choice exam, it says 'Note: To simplify calculations, you may use $\mathbf{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ in all problems.'

Multiplying and dividing by 10 is much, much easier than dealing with 9.8 s , so there's no need to worry about that.

QHmmm. Why do you use '/s ${ }^{2}$ ' to indicate dividing by s^{2} with units, but use 10^{-2} to indicate dividing by 10^{2} in scientific notation?

A:: These are the conventions that the AP physics course, table of information, and exam all use. It's also possible to write $\mathrm{m} / \mathrm{s}^{2}$ as ms^{-2} - using the same convention as you do for scientific notation. If this is what you're more used to, then do feel free to write your units like this instead.

Q:OK, so I got the value for the cage's acceleration - but what about its displacement after 2.0 seconds?!
A: You'll work that out in chapter 7 ...

Not so fast! All through this, we've been assuming that the ball-bearing

and cage will both accelerate at the same rate. But don't big things fall
 Gravity accelerates everything at the same rate (if air resistance is minimal)

Although everyday experience might lead you to think otherwise, the earth's gravity accelerates everything at the same rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ if you ignore the effect of air resistance.

The reason 'light' things like feathers fall more slowly than 'heavy' things like ball-bearings or cages is because they're falling through the air. The feather has a large surface area compared to its weight, so it's held up more by the air. If the air wasn't there, the feather and ball-bearing would land at the same time.

Most of the time in physics, you'll be dealing with things like cages and ball-bearings, which have small surface areas compared to their weight. Unless a question states otherwise, you can safely ignore air resistance.

Sometimes it's

 useful to make an assumption that simplifies a problem so you can solve the easier version.

Now, you've had to deal with a falling thing for which the velocity is continually increasing. This produced a curved displacement-time graph where the slope was never the same from one moment to the next.

You can think of calculating the slope at a single point on this graph as calculating $\Delta \mathbf{x}$ and Δt over a very, very small interval, using two points infinitesimally close to the point you're interested in.

If you want to calculate the instantaneous velocity at a point, you need to choose two points that are really, really, really close together - practically on top of each other!

If you do this, it's more correct to write $\frac{d x}{d t}$ instead of $\frac{\Delta x}{\Delta t}$ to show that the changes are infinitesimally small.

Whichever two points you choose, $\frac{\Delta x}{\Delta t}$ will be the same, as the velocity is constant.

A capital Δ implies that you mean a reasonable-sized change in a quantity.

This means
"smaller than any possible measure".
If you're talking about an instantaneous velocity at a single point like this, a more 'correct' way of writing your equation is to use a small letter ' d ' to mean 'change in' instead of a capital ' Δ '. This means that the change is infinitesimally small.
So you'd write the equation for instantaneous velocity as $\mathbf{v}=\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}$ to make it clear that you mean an instantaneous velocity measured over a tiny, tiny change in \mathbf{x} and t rather than the larger change that using $\Delta \mathbf{x}$ and Δt would imply.

Practically speaking, there are two ways of calculating $\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}$: drawing a tangent (as you've already done) and using calculus (which isn't part of this book).

Now onto solve for the displacement!

You know that the cage won't be going fast enough to break when it hits the ground 2.0 s after being dropped, so it's OK to go ahead with the plan. The notebook summarizes everything you've learned in this chapter about falling objects.

Constant Something with constant acceleration has a straight line acceleration velocity-time graph described by the equation $a=\frac{\Delta \mathbf{V}}{\Delta \mathbf{t}}$

Something falling close to the Earth is accelerated by gravity at a constant rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Your Physics Toolbox

You've got Chapter 6 under your belt, and you've added some terminology and problem-solving skills to your toolbox.

Experiment \rightarrow graph \rightarrow equation

When you do an experiment, you'll usually use the results to draw a graph, then use the slope of the graph to work out an equation.

Slope of a graph

The slope of a displacement-time graph is equal to the velocity.
The slope of a velocity-time graph is equal to the acceleration.

Constant acceleration

If something has constant velocity, its displacement increases more and more each second as time goes on.
Its velocity-time graph has a constant slope equal to its acceleration.

Acceleration due to gravity

Acceleration due to gravity has a value of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downwards when you're close to the Earth's surface.

7 Equations of motion (part 1)

Playing With Equations *

It's time to take things to another level.

So far, you've done experiments, drawn graphs of their results and worked out equations from them. But there's only so far you can go, since sometimes your graph isn't a straight line. In this chapter, you'll expand your math skills by making substitutions to work out a key equation of motion for a curved displacement - time graph of a falling object. And you'll also learn that checking your GUT reaction to an answer can be a good thing.

How high should the crane be?

The Dingo wants to invite the Emu to his birthday party - but the only way he'll get him to stay still for long enough is by catching him in a cage!

In chapter 6, you figured out that it takes the Emu 2.0 s to get from the corner to the target on the road while running at his constant speed.
You also figured out that the cage's velocity after 2.0 s won't lead to it shattering on impact, by drawing its velocity time graph and working out the equation $\mathbf{a}=\frac{\Delta \mathbf{v}}{\Delta t}$. But the Dingo wants to know how high to set the crane. Which means that you now need to work out the cage's displacement after it's been falling for 2.0 s .

You already drew a displacement - time graph for a falling object, but you can't extrapolate it to read off the displacement after 2.0 s because the graph is curved.

If you can't read the value for the displacement after 2.0 s off your graph, what can you do?

Jim: It's a curve, so we don't really know what it's going to do next. If the last point we'd plotted was close to 2.0 s we could probably make an educated guess, but not when we're so far away.
Frank: But 0.78 s is only a little bit less than 2.0 s . We'd only need to
 continue the graph for another 1.22 s - that's hardly any time at all!
Jim: It's a lot of time compared to what we already have. We've plotted less than half the graph between $t=0.0 \mathrm{~s}$ and $t=2.0 \mathrm{~s}$.

Joe: Maybe we could try working out an equation, like we did before to get a value of the cage's velocity from its velocity - time graph?

Graphs and equations are both ways of representing reality.

Frank: But the velocity - time graph is a straight line. Our displacement - time graph is a curved line!

Jim: Yeah, I dunno if it's possible for a curved graph to be represented by an equation.

Joe:: I'm sure it must be possible, if graphs and equations are both ways of representing reality ...

Graphs and equations both represent the real world

Graphs are a way of representing the real world visually. Equations are a way of representing the real world symbolically. They both allow you to predict what will happen to a quantity when other things that affect it change as well.
For example, $\mathbf{a}=\frac{\Delta \mathbf{v}}{\Delta t}$ is the equation for the cage's velocity-time graph. The equation and the graph both represent the same physical reality. The equation shows you symbolically how the velocity, acceleration and time interrelate when the acceleration is constant. If you know values for two of the quantities in the equation, you can use the equation to calculate the third by rearranging the equation.

So, if you can work out the equation that represents your displacement - time graph, you'll be able to use it to solve the problem of how high the cage needs to be.
That's right - we're not going to use Δx and Δt this time.
Originally, $\Delta \mathbf{x}$ and Δt helped with the concept of finding the slope of a graph using the change in \mathbf{x} and t between two points. But as the slope of this graph is continually changing, you'd have to put the two points so close together it'd be impossible to measure the changes!
Instead, you'll use a different variable to represent the displacement and time at each point you're interested in.

> Use a different variable to represent each of the values at the points you're interested in.

You're interested in the start and end points

Were only really interested in two points in the cage's motion - the start (when it's on the platform) and the end (when it hits the ground) - as we want to calculate the cage's displacement between these points.

In the equation you work out for your curved displacement - time graph we're going to use variables to represent every value we might be interested in at these start and end points:

Use the same letter to represent the same type of thing, and subscripts
to say which is which.

You can tell that v and v_{0} are both displacements because they use the letter v. But that they're different quantities because they have different subscripts. are

The little ' O ' is part of the variable name, and is called a subscript.
already know is constant).

There's no point in having a and a, as the value for the acceleration is always the same.

We've drawn in the interesting start and end points on your velocity - time graph.
$\begin{array}{ll}\text { velocity } & \text { Graph of velocity vs time for a } \\ \text { falling object }\end{array}$

This is how the velocity of the cage would continue to change if it hadn't just hit the ground! write on the graph.

Start point.
a. Write down an equation you already know that involves $\mathbf{a}, \Delta \mathbf{v}$ and Δt.
b. Use the values on the graph to rewrite this equation as an equation involving $\mathbf{a}, \mathbf{v}_{0}, \mathbf{v}$ and t.
c. Rearrange your equation so that it says " $\mathbf{v}=$ something".

Sharpen your pencil
 Solution

We've drawn in the start and end points we're interested in on your velocity - time graph.

a. Write down an equation you already know that involves $\mathbf{a}, \Delta \mathbf{v}$ and Δt.

$$
\begin{aligned}
\text { Acceleration } & =\text { Rate of change of velocity } \\
a & =\frac{\Delta v}{\Delta t}
\end{aligned}
$$

b. Use the values on the graph to rewrite this as an equation involving $\mathbf{a}, \mathbf{v}_{0}, \mathbf{v}$ and t.

$$
\begin{aligned}
& a=\frac{\Delta v}{\Delta t}=\frac{v-v_{0}}{t-0} \\
& a=\frac{v-v_{0}}{t}
\end{aligned}
$$

c. Rearrange your equation so that it says "v = something".

Q:Why did you choose particular variable names, like v (with no subscripts) for the final velocity and v_{0} for the initial velocity?

A:: It's a common convention to use x_{0} and v_{0} for the initial values of displacement and velocity and \mathbf{x} and \mathbf{v} for the final values. It's what's used in lots of textbooks, as well as the AP Physics B exam.

Q:But the convention isn't consistent! The initial velocity is called v_{0}, but the initial time doesn't even have a symbol - we just put in its value of 0 .

A:The convention assumes that everything you're interested in starts at $t=0$. The ' 0 ' subscript in \mathbf{v}_{0} stands for 'at $t=0$ ', so you can read \mathbf{v}_{0} as "the velocity at $t=0$ ". Similarly, t_{0} would stand for "the time at $t=0$ ". So there's no need to bother with a t_{0} symbol, as you already know that $t=0$ when $t=0$!

Q:Do I have to use these letters? Before, I've used s instead of x for displacement, and u instead of v_{0} for initial velocity. I'm finding this confusing!
A : The main thing is that you understand the physics concepts that lie behind the equations. It doesn't matter which set of letters you use for that. It's fine to show your work using the letters you're more familiar with that already make sense for you!

Q: So what physics concepts are the most important here? A: A graph and an equation can represent the same thing in real life. In this problem, they both describe what happens to the velocity of the falling cage as time passes.

Q:- OK. But why have I used letters in the equation when I already worked out all the values of the things in the equation?! I know what $\mathrm{v}, \mathrm{v}_{0}$, a and t are for the falling cage!
A: One reason is that you can reuse a general equation again and again. If the crane is a different distance away from the corner, the cage would fall for a different time. Your general equation, $\mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t$, will give you the value of v for any time. All you need to do is put in the new numbers.
Q: And the other reason for not putting in the values yet? A: If you keep the equation general, you'll be able to use it for anything with constant acceleration, even if it isn't $9.8 \mathrm{~m} / \mathrm{s}^{2}$. All you need to do is to put in the new numbers for your new problem.

The equation shows how different variables depend on one another. You can use it as a stepping stone to get what you really want.

Your equation $\mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t$ shows you how the variables $\mathbf{v}, \mathbf{v}_{0}$, \mathbf{a} and t depend on each other. But it doesn't have an \mathbf{x} in it, so you can't use it to directly calculate a value for the displacement,

However, as displacement is rate of change of velocity, the displacement and the velocity must depend on each other. So although you can't use this equation directly, you'll be able to use it as a stepping stone towards calculating the displacement of the cage after 2.0 s .

You have an equation for the velocity but what about the displacement?

You've worked out the equation $\mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t$, which comes from the slope of your velocity - time graph. It gives you an object's velocity, \mathbf{v}, after a certain amount of time (if you know its initial velocity, \mathbf{v}_{0}, and its acceleration, \mathbf{a}).

The notebook keeps
track of where
you're at so far.

But what we're really interested in is the displacement, \mathbf{x}, after a certain amount of time. If you have an equation for that, you can say how far the cage will fall in 2.0 s .

The velocity equation might be useful later on, as velocity and displacement must be related somehow. But right now, you really need an equation with an \mathbf{x} in it to move forward ...

How might you get an equation that involves the displacement?

The average velocity is the same as the constant velocity you could have

gone at to cover

 the displacement between your start and end points in the same time
Get the average velocity from the total displacement and total time.

The average velocity of the cage between its start and end points is given by the change in its displacement divided by the change in time, $\mathbf{v}_{\text {avg }}=\frac{\Delta \mathbf{x}}{\Delta t}$
$\mathbf{v}_{\text {avg }}$ is the average velocity - the same as the constant velocity that an object would need to travel with to cover that displacement in that time.

As $\Delta \mathbf{x}$ is the change in the displacement
 between the start and end points, the equation for the average velocity will have an \mathbf{x} in it - which is what you want to calculate!
\qquad x is the displacement

a. Draw a line on your displacement - time graph to represent the cage's average velocity between times 0 and t.
b. Use the graph to come up with an equation for the average velocity, $\mathbf{v}_{\text {avg }}$, in terms of $\mathbf{x}_{0^{\prime}} \mathbf{x}$ and t.

Sharpen your pencil
Solution

a. Draw a line on your displacement - time graph to represent the cage's average velocity between times 0 and t.
b. Use the graph to come up with an equation for the average velocity, $\mathbf{v}_{\text {avg }}$, in terms of $\mathbf{x}_{0^{\prime}} \mathbf{x}$ and t.

$$
\begin{aligned}
\text { Average velocity } & =\frac{\text { Total displacement }}{\text { Total time }} \\
v_{\text {avg }} & =\frac{\Delta x}{\Delta t}=\frac{x-x_{0}}{t-Q} \\
v_{\text {avg }} & =\frac{x-x_{0}}{t}
\end{aligned}
$$

Equation for the average velocity

Used the displacement - time graph to work out the average velocity.

That's right - we don't know the value of the average velocity.

You've come a long way, and have two equations from the graphs you drew:
$\mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t$ and $\mathbf{v}_{\text {avg }}=\frac{\mathbf{x}-\mathbf{x}_{0}}{t}$.
The second of these equations has an \mathbf{x} in it, which is what you want - but it also has $\mathbf{v}_{\text {avg }}$, the average velocity, in it.

Since you don't know what the average velocity is, you can't use this equation to calculate \mathbf{x} and tell the Dingo how high to put the crane platform right now. But you're definitely making progress ...

Jim: ... hmmm, neither equation helps us. The one on the left is for the velocity, \mathbf{v}, which we're not interested in. The one on the right has the displacement, \mathbf{x}, in it, which is what we want to work out ... but it also has the average velocity, $\mathbf{v}_{\text {avg }}$, in it. And we don't know what $\mathbf{v}_{\text {avg }}$ is.
Joe: Is there another equation we can use?
Frank: What do you mean?
Joe: Our problem is $\mathbf{v}_{\text {avg }}$, right? We can't just rearrange the equation to say " $\mathbf{x}=$ something" and put in the values for the other variables because we don't have a value for $\mathbf{v}_{\text {avg }}$. But what if there was another equation we could use to calculate the value of $\mathbf{v}_{\text {avg }}$?
Frank: I like your thinking. But we already worked out $\mathbf{v}_{\text {avg }}$ the only way we know how - from the slope of our displacement - time graph.
Jim: Hang on! What about our velocity - time graph? Maybe if we look at that, we can eyeball a second equation for $\mathbf{v}_{\text {avg }}$.
Joe: You might be on to something there ... let's try it!

> If you don't know the value for a variable
> in your equation, try to find another equation which includes that variable.

See the average velocity on your velocity-time graph

You've already worked out one equation for the falling cage's average velocity, $\mathbf{v}_{\text {avg }}$, from its displacement - time graph.

Now you can use your intuition to spot $\mathbf{v}_{\text {avg }}$ on the cage's velocity - time graph, which will lead you to a second equation for the cage's average velocity.
(And once you know the cage's average velocity, you can use that to get its displacement, which is what you really want to know!)

Sharpen your pencil

 It'll be somewherebetween v_{0} and v.
a. On your graph, draw in where you think the cage's average velocity is between times 0 and t.

b. Explain how you worked that out visually.
c. Circle the equation from the choices on the right that matches most closely with your ideas.

$$
\begin{aligned}
& v_{\mathrm{avg}}=\frac{\mathrm{v}-\mathrm{v}_{0}}{2} \\
& \mathrm{v}_{\mathrm{avg}}=\frac{\mathrm{v}+\mathrm{v}_{0}}{\mathrm{t}}
\end{aligned}
$$

$$
v_{\mathrm{avg}}=\frac{\mathrm{v}-\mathbf{v}_{0}}{\mathrm{t}}
$$

$$
v_{\mathrm{avg}}=\frac{\mathrm{v}+\mathrm{v}_{0}}{2}
$$

Sharpen your pencil
 Solution

It'll be somewhere between v_{0} and v.
a. On your graph, draw in where you think the cage's average velocity is between times 0 and t.

b. Explain how you worked that out visually.

I think that $v_{\text {ang }}$ will be half way between v_{0} and v.
In fact it'll be the average of v_{0} and v !
The equation l've picked adds together v_{0} and v then divides by 2 , which is how you take an average of 2 numbers.
c. Circle the equation from the choices on the right that matches most closely with your idea.

I didn' t do that. I tried putting in $v_{0}=0$ and $t=2$ into the equations, since those are the values for Dingo's cage problem. But all the equations gave me the same answer!

The right equation will work for ALL values of $\mathbf{v}_{\mathbf{0}}$ and \mathbf{t}.

If you tried putting in the Dingo's values for \mathbf{v}_{0} and t into the equations, then well done. You're definitely thinking along the right lines.

If you're still not sure which equation is correct, the next thing to do is to try some different numbers for \mathbf{v}_{0} and t and see what happens.

Even if you think you already know which equation is right, it's always a good idea to double-check it with some numbers.

Test your equations by imagining them with different numbers

If you're not sure whether an equation's right and want to test it, you can try some numbers in it to see if the answers you get are plausible.

You have four different equations for $\mathbf{v}_{\text {avg }}$ to choose from. They can't all be right! So it's time to try some different values for $\mathbf{v}, \mathbf{v}_{0}$ and t in each equation to see which gives you consistently sensible answers that are the right size.

Fill in the table to show the value for $\mathbf{v}_{\text {avg }}$ given by each of these equations for various values of $\mathbf{v}_{0^{\prime}} \mathbf{v}$ and t.

Is the average velocity the size you'd expect it to be?

Does the equation have the right units?

Possible equation for $v_{\text {avg }}$	$v_{0}=0 \mathrm{~m} / \mathrm{s}$ $v=10 \mathrm{~m} / \mathrm{s}$ $t=5 \mathrm{~s}$	$v_{0}=0 \mathrm{~m} / \mathrm{s}$ $v=10 \mathrm{~m} / \mathrm{s}$ $t=100 \mathrm{~s}$	$v_{0}=9 \mathrm{~m} / \mathrm{s}$ $\mathrm{v}=10 \mathrm{~m} / \mathrm{s}$ $\mathrm{t}=5 \mathrm{~s}$	
$\frac{\mathrm{v}-\mathrm{v}_{0}}{2}$	$\frac{10-0 \mathrm{~m} / \mathrm{s}}{2}=5 \mathrm{~m} / \mathrm{s}$			Q Qoes this
$\frac{v+v_{0}}{t}$				
$\frac{v-v_{0}}{t}$				
$\frac{v+v_{0}}{2}$				

Calculate the cage's displacement!

You've used your displacement - time and velocity - time graphs to work out some equations that describe what the cage is doing as it falls towards the ground.

Now, you can use them to calculate a value for the cage's displacement after 2.0 s !

Sharpen your pencil

a. Draw a sketch of the cage and platform, with values and/or vector arrows representing what you already know about $\mathbf{x}, \mathbf{x}_{0^{\prime}}, \mathbf{v}_{0}, \mathbf{v}, \mathbf{a}$ and t.

This collates

 together all the information you already know in a visual format.The cage has to fall for 2.0 seconds, and acceleration due to gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
b. Use what you already know to calculate \mathbf{v}.
c. Use your answer from part b. to calculate $\mathbf{v}_{\text {avg }}$.
d. Use your answer from part c. to calculate \mathbf{x}.

This collates together all the information you already know in a visual format.

b. Use what you already know to calculate \mathbf{v}.

It's also OK
to write in
the value you
calculated in

$$
\text { chapter } 6
$$

$$
\begin{aligned}
& v=v_{0}+a t \\
& v=0+9.8 \times 2.0 \\
& v=19.6 \mathrm{~m} / \mathrm{s}=20 \mathrm{~m} / \mathrm{s}(2 \mathrm{sd})
\end{aligned}
$$

$$
\overbrace{}^{\mathrm{c.Us}}
$$

$$
\begin{aligned}
& v_{\text {avg }}=\frac{v+v_{o}}{2}=\frac{20+0}{2} \\
& v_{\text {avg }}=10 \mathrm{~m} / \mathrm{s}(2 \mathrm{sd})
\end{aligned}
$$

d. Use your answer from part c. to calculate \mathbf{x}.

Each part of this problem involves using a different equation that you originally
worked out from your graphs.

$$
\begin{aligned}
& \begin{aligned}
v_{\text {avg }} & =\frac{x-x_{0}}{t} \\
x-x_{0} & =v_{\text {avg }} t \\
x & =v_{\text {avg }} t+x_{0}
\end{aligned} \\
& x=10 \times 2.0+0 \\
& x=20 \mathrm{~m}(2 \mathrm{sd})
\end{aligned}
$$

You know how high the crane should be!

You've calculated the cage's displacement after 2.0 s , so you know how high the crane should be - an awesome result!

At last, the Dingo will be able to make the Emu pause for long enough to invite him to his birthday party ...

> Start every problem with a sketch to bring together everything you know in a visual way.

Then use what you already know to work out what you don't know.

But now the Dingo needs something more general

But the Dingo's soon back, with the sad news that his crane won't go high enough! What's more, he's not sure where he's going to find another spot for the crane, so has to stay flexible.

The Dingo really needs to be able to work out the cage's displacement for any time that the Emu might take to get to the target.

You don't want to do all of that every time when you just want the displacement!

You're right - you can do this by calculating intermediate values for \mathbf{v} and $\mathbf{v}_{\text {avg }}$ every time you want to know a new value for \mathbf{x}. But to go through all of that every time you want to calculate a displacement isn't very efficient, and will take a long time.
What you really want is an equation that says " $\mathbf{x}=$ something" where the right hand side only contains variables that you already know values for $\left(\mathbf{x}_{0}, \mathbf{a}\right.$ and $t)$. Somehow, we need to "get rid" of the intermediate variables \mathbf{v} and $\mathbf{v}_{\text {avg }}$ from your equations to come up with a general equation for the displacement that you'll be able
 to use again and again.

The time you spend getting your equations into this form will be made up by the time you save by using the new equation!

A substitution will help

Suppose you have two equations, that say " $e=2 b$ " and " $e=c+d$ " respectively. By definition, the two sides of an equation are equal.

Both equations say " $e=$ " on one side. So $2 b$ is equal to e and $c+d$ is also equal to e.
Therefore, we can write down the new equation: $2 b=c+d$. This works because if $2 b$ and $c+d$ are both equal to e, they must also be equal to each other.

This is called making a substitution because the equation you're left with doesn't have any mention of e in it. It's like the e has been substituted and gone off the playing field, like substitutes do in sports.

Once you've substituted for " "e", you're left with \longrightarrow an equation that doesn't have " e " in it at all.

You can get rid of a variable that isn't helpful to you by making a substitution.

Substitution can be useful if e is a quantity that's difficult to measure, but you're interested in the other variables in the equations. Instead of having two equations which both have an e in them, you can combine them to completely get rid of the e by doing a substitution.
© Don't worry if you're not sure how a substitution will help you with the crane problem yet. We're almost there...

Q:- Can I do substitutions with any equations I like?

A:: Only with equations where there's some form of overlap between the variables. In the same way that some dominos don't match, some equations don't have any variables in common.

So if your equations are $a=b$ and $c=d$, you can't make any substitutions because there's no common ground.

Q:What if I have two equations, but the letters mean different things. Like in one equation "a" means acceleration but in another "a" means altitude?
A : Then you can't make a substitution. The letters need to represent the same thing each time for it to be meaningful.

Q:If I'm given some equations to use in a test, how am I supposed to know what the letters in them represent?
A: Many exam boards provide an equation sheet. For example, the AP Equation Table gives you a list of what the letters stand for in the equations for each section of the syllabus. You're doing Newtonian Mechanics at the moment, so should look in that section to find out what the symbols mean.

Q:But I don't really want to look backwards and forwards to an equation table all the time to look up what the letters mean.
A : That's why we've mentioned what each symbol means as we've introduced it, and keep on slipping in hand-written reminders when they come up again. You'll pick a lot up as you go along, which is great if you're doing the AP course as you don't get an equation table at all in the multiple choice part!

Q:So if I get used to the equations by USING them, I won't really need the table at all and can go a lot faster?
A: : You got it! It can be nice to have the equation table to double-check what you think you can remember, to check units or simply for inspiration if you're not sure where to go with a problem.

But learning the equations through understanding and using them is the most successful route.

Q:But the equations on the scales over there aren't physics equations!
A: OK, so it's time to get back to the Dingo's crane where your substitution skills are about to come in handy ...

You can only substitute one equation into another if they have at least one variable in common between them.

If you're working with more than one equation, make sure that the same letter represents the same thing in all of them!

there are no Dumb Questions

Making a substitution instead of calculating intermediate values saves

you time in the long run.

Q:- Why is it useful for me to make a substitution?

A:
Sometimes the equation you want to use has a variable in it that you don't have a value for. If you do a substitution to get rid of that variable, you'll be able to use the new equation to get what you want.

Q- How do I get rid of a variable by making a substitution?

A:You also need a second equation that contains that variable. If you rearrange that equation so that the variable you want to get rid of is on its own on the left, you can then substitute in everything on the right hand side every time you see that variable in your original equation.

Q:- What's wrong with just calculating a value for the variable and putting that in the original equation instead?
A: There's nothing inherently wrong with that - but it's a process you'll have to repeat again and again in the future if you want to do the same calculation using different numbers. You also might run into problems with rounding your intermediate values, or making a calculator typing mistake.

Q: so is making a substitution kind-of the same as calculating an intermediate value, except with letters not numbers?
A
: Great spot! Instead of substituting in a value for the variable, you'll be substituting in some other variables that it's equal to.

Get rid of the variables you don't want by making substitutions

You've managed to work out three different equations from your graphs.

But there are a couple of variables, \mathbf{v} and $\mathbf{v}_{\text {avg }}$, which you didn't know at the start, and it would be good to get rid of them by making substitutions so that you don't have to spend time calculating them.

If you can do that, you'll be left with a general equation that gives you the displacement after any time, but doesn't include $\mathbf{v}_{\text {avg }}$ or \mathbf{v}. You'll be able to use this equation to work out how far the cage falls in any time - and also for any problem where an object has constant acceleration.

So, it's time to get on with making some substitutions to get rid of the variables you don't want, \mathbf{v} and $\mathbf{v}_{\text {avg }}$.

Sharpen your pencil

The equations you've worked out so far (with the variables you knew values for at the start checked off) are in the notebook above.

Decide which of $\mathbf{v}_{\text {avg }}$ and \mathbf{v} is the easiest to get rid of first by making a substitution. Then go ahead and do the substitution!

The equations you've worked out so far (with the variables you knew values for at the start checked off) are in the notebook above.

Decide which of $\mathbf{v}_{\text {avg }}$ and \mathbf{v} is the easiest to get rid of first by making a substitution. Then go ahead and do the substitution!

I already have two equations that say " $v_{\text {avg }}$ = something", so make the substitution to get rid of $v_{\text {avg }}$ first.

$$
\begin{aligned}
& v_{\text {avg }}=\frac{v+v_{0}}{2} \text { and also } v_{\text {avg }}=\frac{x-x_{0}}{t} \\
& \Rightarrow \frac{v+v_{0}}{2}=\frac{x-x_{0}}{t}
\end{aligned}
$$

Try to spot which part of the math will be the easiest to do.

You already have two equations that both say " $\mathbf{v}_{\text {avg }}=$ something" so doing a substitution with them is the most straightforward thing to do.

Doing the easier substitution first means that you're less likely to make a careless slip. If you start with the more difficult substitution, you're could mess up and get stuck when you don't have to.

If you can choose which order to do the math in, always try to spot the easier part and do it first.

Continue making substitutions .

Now that you've made one substitution, your equation with \mathbf{x} and t in it doesn't have $\mathbf{v}_{\text {avg }}$ in it anymore But in addition to \mathbf{v}_{0} and t (which you've known values for from the start) the equation contains the variable \mathbf{v}.

Since we're deriving a general equation for \mathbf{x} that doesn't require you to know a value for \mathbf{v}, you can use the other equation to make a substitution that 'gets rid' of the \mathbf{v} as well.

Sharpen your pencil

a. Using your two equations, make a substitution to 'get rid' of the variable \mathbf{v}.
b. Then rearrange your new equation into the form " $\mathbf{x}=$ something".

Sharpen your pencil Solution

a. Using your two equations, make a substitution to 'get rid' of the variable \mathbf{v}.

Equation (I) already says " $v=$ something".
Remember to explain what you're doing and why.

It's a good idea to number your equations (1) and (2) so you can refer to them later on.

Rearrange equation (2) to say " $v=$ something".

$$
\frac{v+v_{0}}{2}=\frac{x-x_{0}}{t} \curvearrowleft \text { Multiply both } \quad \text { sides by } 2 .
$$

Make a substitution:

$$
=v+v_{0}=\frac{2\left(x-x_{0}\right)}{t}<\begin{array}{r}
\text { Subtract } \\
v_{0} \text { from } \\
\text { both sides. }
\end{array}
$$

If the x starts off the left, it's easier to rearrange the equation to say " $x=$ something".

b. Then rearrange your new equation into the form " $\mathbf{x}=$ something".

$$
\frac{2\left(x-x_{0}\right)}{t}-v_{0}=v_{0}+a t \quad \begin{aligned}
& \text { Add } v_{0} \text { to both sides so that there's only the } \\
& \text { term that contains } x \text { on the left hand side. }
\end{aligned}
$$

$\begin{aligned} & \text { Multiply both sides by } t \\ & \text { so that the } x-x_{0} \text { bit }\end{aligned} \quad \frac{2\left(x-x_{0}\right)}{t}=2 v_{0}+a t$
isn't divided by anything.

$$
2\left(x-x_{0}\right)=2 v_{0} t+a t^{2} \quad \text { Divide both sides by } 2 \text { so that } \quad \text { the } x-x_{0} \text { is left on its own. }
$$

Add x_{0} to both sides so $\quad x-x_{0}=v_{0} t+\frac{1}{2} a t^{2}$
that you have x on its own.

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

If you want to rearrange just one of your equations to say " $\mathbf{v}=$ something" then substitute the "something" in every time you see \mathbf{v} in your other equation, then that's fine.

Doing it this way would look like this:

$$
\begin{equation*}
v=v_{0}+a t \tag{1}
\end{equation*}
$$

Substitute $v_{0}+a t$ for v in equation (2):

Then you'd go on to rearrange the equation to say $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$ as you did before.

Doing the math this way is fine. The main thing is that you always understand what you're doing and why.

Sharpen your pencil

This is the equation -You've worked out. But is it right?

You've made a lot of substitutions, and come up with a nice-looking equation for x that only involves variables you already knew the values for at the start.

But does your equation SUCK?

Use the space on the right to jot down as many different ways you can think of to check over your equation, which is supposed to work OK for any values of the variables in it.

Don't worry if you're not sure how to do a particular check yet. Just say what you'd like to do if possible.

You've made a lot of substitutions, and come up with a nice-looking equation for x that only involves variables you already knew the values for at the start.

But does your equation SUCK?
Use the space on the right to jot down as many different ways you can think of to check over your equation, which is supposed to work OK for any values of the variables in it.
S - Size. I guess \mid could try the value $t=2.0 \mathrm{~s}$ in the equation to see if it gives the same answer as it did before. And maybe try some other values as well.
U - Units. I'd like to check the units, but I'm not sure how to do that.

C - Calculations. I think I did the substitutions OK.
K - 'K'ontext. The equation says that x depends on v_{0}, a and t, which it probably should!

You did it - you derived a useful equation for the cage's displacement!

The equation you've worked out for the displacement after a certain amount of time is $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$. With not a \mathbf{v} or $\mathbf{v}_{\text {avg }}$ to be seen anywhere!
But is your equation correct? You don't want the Dingo's birthday plans to go wrong because of a calculation error.

When you work out an equation, you should check it over before you use it.

When you're checking over a numerical answer, asking yourself if it SUCKs is a good tool. But not all of the parts of SUCK are applicable to an equation.
So instead, we're going to think GUT.
G-Graph. Does your equation describe the graph?
U - Units. Does each term have the same units?
T-Try out extreme values (or values you already know the answer for) in your equation.

We're going to do the units part first, as it's the quickest check you can do once you've got used to how it works.

Check your equation using Units

A quick way of checking your equation is to think about the units of each of its terms (a term is one of the chunks in your equation that you add or subtract).

You're only allowed to add or subtract things that have the same units, as something like " 2 seconds +3 meters" is meaningless. So every term in your equation must have the same units.

Each of the blocks represents a term in the equation - a chunk

Every term in your equation must have the same units, so you can add or subtract them.

A term can be anything from a single variable to a group of variables and numbers multiplied together. You need to keep track of the units of each variable to make sure that each term has the same units.

A term can be anything from a single variable to a group of variables and numbers multiplied together.

Does your equation make sense - do all of its terms have the same units? Fill in the table to find out.	Some answers are already filled in for you.							
	Term	\times	x_{0}	$v_{0} t$		1/2at ${ }^{2}$		
	Units of variable	$\rightarrow[\mathrm{x}]$	$\left[\mathrm{x}_{0}\right]$	$\left[\mathrm{v}_{0}\right]$	[t]	[1/2]	[a]	[t]
Square brackets means 'units of'.				$\mathrm{v}_{\mathrm{m} / \mathrm{s}}$	s			
these variables are	Units of term	[x]	[o_{0}]	$\left[\mathrm{v}_{0} \mathrm{t}\right]=\mathrm{m} / \mathrm{s} \times \mathrm{s}$		${ }^{\left.11 / 2 a^{2}{ }^{2}\right]}=$		
multiplied together, you can work out the				$\frac{m}{s} \times s=m$				

Does your equation make sense - do all of its terms have the same units? Fill in the table to find out.	encil					Numbers are dimensionless and don't have units.\qquad		
	Term	\times	x_{0}	$v_{0} t$		1/2at ${ }^{2}$		
	Units of	$>_{\text {[x] }}$	[x_{0}]	[v_{0}]	[t]	$[1 / 2]$	[a]	[t]
Square brackets means 'units of'. So $[x]=$ meters .	e	m	m	m / s	s	No units.	$\mathrm{m} / \mathrm{s}^{2}$	s^{2}
	Units of term	[x]	[x_{0}]	$\left[\mathrm{v}_{0} \mathrm{t}\right]=\mathrm{m} / \mathrm{s} \times \mathrm{s}$		$\left[1 / 2 a t^{1}\right]=m / s^{2} \times s^{2}$		
		$\stackrel{m}{\sim}$	${ }^{m}$	$\frac{m}{s} \times s=m$		\square		
	\square							

All of the terms in your equation have the same
units (meters) so your equation makes sense.

If a term in your equation has different units, then you know there MUST be something weird going on, as the equation doesn't make sense.

Anything you add or subtract must have the same UNITS.

Each TERM in the equation

Q: Why is it important for all the terms in an equation to have the same units?
A: You can't add things together which have different units. The question "What is 2.0 seconds + 3 meters?" is meaningless, because you can't add meters to seconds.

Q: But you can multiply and divide things that have different units, right?
A: Yes - for example, when you divide a displacement by a time to work out something's velocity in meters per second.
Q:
What would I do if it turned out that one of the terms in my equation had different units from the rest?

A: If one of the terms has different units from the others, you probably made a little slip with the math when you were rearranging an equation.

Q:

- What kinds of mathematical slips should I be on the lookout for?

A:: If one of the terms sticks out when you compare the units, look back and see if you made a slip with that term when you were rearranging your equation.

For example, maybe you meant to multiply everything by t when you were rearranging your equation, but missed doing that to one of the terms.

Q: Does checking the units like this guarantee 100% that my equation's right?
A: No, not totally. Thinking about the units of each
term of your equation will help to catch any mistakes that
altered the units.

Q: What kinds of mistakes don't alter the units?
A: Perhaps you meant to multiply everything by 2 when you were rearranging your equation. Since 2 is just a number, it doesn't have any units, so this method wouldn't pick up on that.

The other thing that sometimes happens is missing off a subscript, like writing x instead of x_{0}. As x and x_{0} both have the same units, this wouldn't get picked up.

Q: How would I find a mistake if it doesn't involve units?

A: You can compare your equation with your graph and try out some extreme values in it to see if it really does describe reality ...

> If all of the terms in your equation that need to be added to or subtracted from each other have the same units, you're doing great!

Check your equation by trying out some extreme values

You've worked out an equation that describes the displacement - time graph for a falling object: $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a}^{2} t^{2}$. And you've just confirmed that each term in the equation has the same units.
But that doesn't totally guarantee that the equation is right.

It's also a good idea to check your equation by trying out some extreme numbers in it, and comparing what your equation says to what would happen in real life. So ask yourself things like "what would happen if the time was zero?" or "what would happen if the initial velocity was very large?"

In real life, if the time was zero, then you wouldn't have time to go anywhere.
Your displacement would be the same as \mathbf{x}_{0}, your initial displacement.
Your equation says $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 t^{2}$. But if $\mathrm{t}=0$, then the term $\mathbf{v}_{0} t$ is 0 because anything multiplied by zero is zero. Similarly, the term $1 / 2 \mathbf{a} t^{2}$ is zero. So your equation becomes $\mathbf{x}=\mathbf{x}_{0}+0+0$, or just $\mathbf{x}=\mathbf{x}_{0}$. Which is what you already worked out would happen in real life!

If a variable is zero, then any term where it's multiplying must also be zero.

If a variable is very large, then any term where it's multiplying must also be very large. And any term where it's dividing must be very small.

Similarly, if a variable is very large, then any term where it's multiplying will also become very large and dominate the equation. And any term where the variable is dividing will become very small and will hardly affect the equation at all. This is because dividing by a very large number gives you a very small answer.

In real life, if the initial velocity was very large, you'd expect the displacement to be very large as well.
Your equation says $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 t^{2}$. If \mathbf{v}_{0} is very large, then the $\mathbf{v}_{0} t$ term will also be very large and will dominate the equation. So your equation would become " $\mathbf{x}=$ something very large", which is what you know will happen in real life.

BE the equation

Your job is to imagine you're the equation. What's going to happen to you at various EXTREMES? When the acceleration is zero? When the acceleration is very large?

When the time is zero? When the time is very large? How does v_{0} affect you? And most importantly - do you describe reality?!

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

BE the equation - SOLUTTON

Your job is to imagine you're the equation. What's going to happen to you at various EXTREMES? When the acceleration is zero? When the acceleration is very large?

When the time is zero? When the time is very large? How does v_{0} affect you? And most importantly - do you describe reality?!

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

Extreme	What happens in real life?	What happens to your equation?	Does your equation describe what happens in real life?
$t=0$	You've had no time to move, so you won't have gone anywhere.	$x=x_{0}$	Yes - it says that you stay where you started and don't go anywhere.
t is large	Your displacement is large because you travel for a long time.	x is large because the $v_{0} t$ and the $1 / 2 a t^{2}$ terms dominate.	Yes - it predicts that your displacement is large.
$\mathrm{a}=0$	The velocity is constant.	The equation becomes $x=x_{0}+v_{0} t$	Yes. This is similar to the equation distance $=$ speed \times time except with vectors and the initial displacement, x_{0}, in there.
a is large	The velocity will get faster and faster more quickly.	The $1 / 2$ at t^{2} term dominates more and more as t^{2} increases.	Yes - it says that you get faster more quickly.
v_{0} is zero	x will depend only on the acceleration and x_{0} as you have no velocity at the start.	The equation becomes $x=x_{0}+1 / 2 t^{2}$	Yes - displacement only depends on acceleration and x_{0}, and not on v 。
v_{0} is large	Your displacement is large, as you're going really fast right from the start.	x is large because the $v_{0} t$ term dominates.	Yes - it predicts that you go a long way.

Graph and equation story magnets

As graphs and equations both represent reality, a third (and final) way you can check your equation is to see if it tells the same story as your graph.

Your job is to match up each graph and an equation with a story. Each magnet will be used exactly once.

All of the equations are based on the equation you worked out, $x=x_{0}+v_{0} t+1 / 2 a t^{2}$ but with some of the variable equal to zero (like you've just been thinking about) which leads to some of the terms being missing.

A couple of the story magnets have been left blank so that you can make up your own stories to describe the graphs! Think about using phrases like "constant velocity", "zero velocity", "constant acceleration" or "zero acceleration" in your stories.

Write your own stories on the blank magnets.

A car sitting at traffic lights at displacement x_{0} from home pulls away with constant acceleration.

A person in an office sits in the same position for a long time.

A cage is dropped from a crane from initial displacement $x_{0}=0$.

$x=x_{0}+1 / 2 a t^{2}$

As graphs and equations both represent reality, a third (and final) way you can check your equation is to see if it tells the same story as your graph.

Your job is to match up each graph and an equation with a story. Each magnet will be used exactly once.

All of the equations are based on the equation you worked out, $x=x_{0}+v_{0} t+1 / 2 a t^{2}$ but with some of the variable equal to zero (like you've just been thinking about) which leads to some of the terms being missing.

A couple of the story magnets have been left blank so that you can make up your own stories to describe the graphs! Think about using phrases like "constant velocity", "zero velocity", "constant acceleration" or "zero acceleration" in your stories.

The equation doesn't have the variable t in it. If x doesn't depend on t, then x must be constant.

It doesn't matter what story you made up,
as long as you realized that a constant slope
on the $x-t$ graph means a constant velocity.

These graphs are curved
because of the t^{2} part
of the equation. $1^{2}=1$,
$2^{2}=4,3^{2}=9$, and so
on. As t increases, the
t^{2} term dominates and
makes the graph get
steeper and steeper. $\quad \begin{aligned} & x \\ & x_{0}+1 / 2 a t^{2} \\ & x_{0}\end{aligned}$

A car sitting at traffic lights at displacement x_{0} from home pulls away with constant acceleration.

Your equation checks out!

Your equation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 t^{2}$ passes all of the tests you've done on it.

The graph and the equation both tell the same story.

A cage is dropped from a crane from initial displacement $x_{0}=0$.

On this occasion, $x=O$ (so the graph starts at $x=0$) and $v_{0}=O$ (as you're dropping it from a standing start).

The t^{2} part means that the $x-t$ graph is curved.

To check your equation over, check your GUT.

All of the terms in the equation have the same units (meters).

When you try out extreme values, the equation corresponds to reality.

Sharpen your pencil Solution

The Dingo now wants the cage to fall for 1.50 s .
How high should he set the platform of the crane?


```
\(x=x_{0}+v_{0} t+1 / 2 a t^{2}\)
\(x=0+0+0.5 \times 9.8 \times 1.50^{2}\)
\(x=\underline{\underline{11.0 m}}(3 \mathrm{sd})\)
```


So the Dingo drops the cage ...

To be continued

Question Clinic: The "Substitution" Question

This indicates that you probably don't have to work out any extra equations apart from the ones they give you.

If you're aware of the units of your variables, you can test your final answer by making sure each term in your equation has the same units (see page 266).
7. Given the equations:

$$
v=v_{0}+\text { at } \quad v_{\mathrm{avg}}=\frac{\mathrm{x}-\mathrm{x}_{0}}{\mathrm{t}} \quad \mathrm{v}_{\mathrm{avg}}=\frac{\mathrm{v}+\mathrm{v}_{0}}{2}
$$

a. Write down what each of these symbols conventionally Always remember that \longrightarrow means / represents in physics, and give their units. physics equations MEAN something and aren't just meaningless letters to do algebra with.

This means that they want an equation that says " $x=$ something", i.e. the x is on its own on the left hand side.
b. Find an expression for \mathbf{x} in terms of $\mathbf{x}_{0}, \mathbf{v}_{0}, \mathbf{a}$ and t.

This means that they want the right-hand side to only have x_{0}, v, a and t in it, and NO other variables.

Watch for the variables that you DON'T want in the final equation, and try to work out how to make substitutions that get rid of them.

Try to get a FEEL for what your equation is saying at the extremes of variables. Does it represent reality?

Question Clinic: The "Units" or "Dimensional analysis" Question

Each TERM in the equation must have the same units.

You're only given the units of t and $x_{\text {, not }} v_{0}$ or x_{0} or a. But you only need the units of one of the terms, and as x is a term you're fine.
8. In the equation $x=x_{0}+v_{0} t+1 / 2 a t^{2}$, the units of t are seconds and the units of Pare meters. What are the units of a ?

Look carefully to see whether the question asks you to give your answer in terms of UNITS or DIMENSIONS.
 to or

9. In the equation $\underline{x}=\underline{x}_{0}+v_{0} t+{ }^{1 / 2 a t} t^{2}, t$ has dimensions of time and x has dimensions of length. What are the dimensions of a ?
 Chapter 3 if you feel you need a review.

A question that asks you about dimensions is exactly the same as one that asks you about units, except that you need to give a final answer of "length" instead of "meters", or "time" instead of "seconds" etc.

Honest Harry has a problem

At Honest Harry's Autos, they're always thinking of new ways to make their second-hand cars stand out from the competition. Detailed specs on their website, a one year guarantee, and fluffy dice all help them to stay ahead of the rest.

But Harry's latest idea has got him into trouble.
"Most dealers have the car's acceleration from 0-60 miles per hour in their specs," he explains. "But you can go at 80 mph on the freeway. So I decided to come up with specs for acceleration between 60-80 mph myself. No one else has that!"

But his figures got Harry into hot water when scores of angry motorists returned their cars threatening to sue him for misinformation, as the car's performance from $60-80 \mathrm{mph}$ was far poorer than he'd claimed.
"I dunno what went wrong," Harry says mournfully. "I set things up to plot the speedometer reading on a graph as I accelerated from 60 to 80 mph . Then I drew a best fit straight line through my data points, making sure it went through the origin, and used the slope of that to work out the acceleration that went on the spec sheet."

Why did Harry calculate the wrong acceleration?

The origin of Harry's problem ... is the origin!

Why did Harry calculate the zorong acceleration?

Harry drew his straight line through the origin of his graph (where the velocity is 0 mph and the time is 0 s). But the car's speed at $\mathrm{t}=0$ was actually 60 mph , so the line he drew should have crossed the vertical axis at 60 mph , not at the origin.

This meant that the slope of his line was much steeper than it should have been - so his values for the acceleration of each car were far too high. No wonder Harry's customers came back to complain!

The equation for the graph is $v=v_{0}+a t$. where v_{0} is the velocity at $t=0$. Harry's right that he can work out the car's acceleration from the slope of a best fit straight line - but only if the line he draws passes through v_{0} !

> A best fit straight line doesn't need to go through the origin.

You only need to memorize a couple of this chapter's equations for your exam

The two important equations from this chapter are $\mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t$ and $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$. These are the two things you need to memorize for your exam - so that you can solve all kinds of problems similar to this one!

And don't worry - you'll pick the equations up soon enough by using them to do problems. As long as you practice, there'll be no need for you to do any rote memorization.

Think like a physicist!

If you practice your tennis forehand, you can guarantee that your tennis results will improve even though you'll never play two identical forehands because each game situation is unique.

In a similar way to your forehand. you can also develop your equation-handling skills to enable you to solve all kinds of problems that are like this one, even if they're not exactly the same.

Grooving your

 physics skills means that you can solve all kinds of problems, not just ones you've memorized.

Throughout your physics career (and definitely in your exam) you'll be interpreting graphs and working out equations from them. If you want to understand what's going on and do well in physics, you need to be able to rearrange equations, make substitutions and check your answers. Which is what you've been practicing in this chapter.

> Now you can solve all kinds of problems that are like this one.

V
Substitution
Making a substitution is 'getting rid' of a variable from an equation by replacing it with an expression it's equal to (usually from a second equation).

Your Physics Toolbox
You've got Chapter 7 under your belt and added some problem-solving and answerchecking skills to your toolbox.

Equation of a graph The equation of a graph has the form: vertical $=$ something to do with horizontal
A fundamental equation of motion

GUT check
Graph - Do your equation and graph tell the same story?
Units - Do all the terms in your equation have the same units?
Try extreme values - Does your equation mirror reality when you make the variables zero or very large one at a time?

Another fundamental equation of motion

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

Substitution
Making a substitution is replacing a variable in an equation with an expression that's equal to it.
This can be useful if you have a variable in your equation that you don't know a value for.

8 equations of motion (part 2)

*Up, up, and... back down *

What goes up must come down. You already know how to deal with things that are falling down, which is great. But what about the other half of the bargain - when something's launched up into the air? In this chapter, you'll add a third key equation of motion to your armory which will enable you to deal with (just about) anything! You'll also learn how looking for a little symmetry can turn impossible tasks into manageable ones.

Previously ...

Now ACME has an amazing new cage launcher

But you can't keep the Dingo down for long - especially when ACME has an amazing new cage launcher! Once installed, it'll propel a standard ACME cage straight up in the air at a speed of your choice.

It's ideal for a more subtle approach - you can launch the cage from ground level, instead of having a big crane that the Emu will spot.

You just need to work out what velocity to launch it at so that it lands back on the target when the Emu arrives, exactly 2.0 s after you launched it.

*- 8 + B

ACME cage Launcher

- Launches a standard ACME cage straight up in the air.
- Variable launch speeds.

- Waterproof
- Payment plans and financing available

Joe: Hmm, could we try using the equation we worked out in chapter 7? Y'know, $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 t^{2} t^{2}$.
Frank: But that was for a falling thing. This time, the cage is going up. It's not the same thing.

Joe: But once the cage gets to its maximum height, it falls back down again. So it's kinda the same. Or, well, at least the falling down part of it is!

Frank: But what about the first half, when the cage is going up?
Jim: Actually, the equation might work OK then too. It's supposed to work in any situation where the acceleration's constant, right? And I think that the acceleration due to gravity is constant, whatever direction you're moving in.

Frank: But how can the cage be accelerating downwards, when it's moving upwards?

Joe: Acceleration is rate of change of velocity, right? And the cage gets slower as it goes up. So the acceleration vector must be pointing downwards, or else it wouldn't get slower.

Frank: I think I'd find it easier to visualize with a sketch ...

Always start
 with a sketch!

Sharpen your pencil

Draw a sketch of the cage just after it's been launched straight up in the air. Mark on the initial velocity vector \mathbf{v}_{0}, the acceleration vector \mathbf{a}, and any other information you know about the problem.

Do you think it's going to be OK to reuse the equation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$ in this new scenario? Why / why not?

Sharpen your pencil
 Solution

Draw a sketch of the cage just after it's been launched straight up in the air. Mark on the initial velocity vector \mathbf{v}_{0}, the acceleration vector \mathbf{a}, and any other information you know about the problem.

Cage takes $t=2.0 \mathrm{~s}$
to go up then down.

The cage starts
and ends at the
same point, so x_{0} and x are both 0 m

$$
\Rightarrow \begin{aligned}
& x_{0}=0 \mathrm{~m} \\
& x=0 \mathrm{~m}
\end{aligned}
$$

Do you think it's going to be OK to reuse the equation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \boldsymbol{t}^{2}$ in this new scenario? Why / why not?

The acceleration vector points down regardless of the direction of the cage's velocity.
The acceleration will be constant at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downwards. The equation's supposed to be used for constant acceleration, so it'll probably work.

The acceleration due to gravity is constant

The equation of motion you worked out last time, $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a}^{2}$, is supposed to be OK in any situation where the acceleration is constant.

If you can reuse this equation, it'll be much much faster than going through the rigmarole of trying to design and carry out an experiment where you shoot things straight up into the air.

If an object is acted on ONLY BY GRAVITY, it has

an acceleration
of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downwards, whatever its velocity is.

When the cage is going up, it gets slower. This is because it's being accelerated downwards at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$

When the cage's velocity is zero, its acceleration due to gravity is still $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

When the cage is going down, it gets faster. This is because it's being accelerated downwards at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$

Although you originally worked out this equation from a graph you plotted by dropping things down from a height, any object that's accelerated only by gravity has a constant acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ downwards. It doesn't matter whether its velocity vector points up, down, sideways, or at an angle.

$\mathbf{a}=9.8 \mathrm{~m} / \mathrm{s}^{2}$

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

Velocity and acceleration are vectors.
v_{0} is upwards, and a is downwards - as they point in opposite directions, they'll have opposite signs.
It IS possible for a positive number and a negative number to equal zero when you add them together. So the equation could be OK.

a is DOWNWARDS.

Velocity and acceleration are in opposite directions, so they have opposite signs

When \mathbf{x} and \mathbf{x}_{0} are both zero, your equation becomes $0=0+\mathbf{v}_{0} t+1 / 2 t^{2}$. So the terms on the right hand side of your equation, $\mathbf{v}_{0} t$ and $1 / 2 \mathbf{a}^{2}$, must add up to zero. You're interested in what's happening at $t=2.0 \mathrm{~s}$, so both t and t^{2} are positive. Therefore, the signs of the terms $\mathbf{v}_{0} t$ and $1 / 2 \mathbf{a} t^{2}$ are determined by the signs of \mathbf{v}_{0} and \mathbf{a}.
You're working with vectors! So as well as having a size, \mathbf{v}_{0} and \mathbf{a} have a direction. The acceleration due to gravity, a, always acts downwards. But the initial velocity, \mathbf{v}_{0}, is upwards. So \mathbf{v}_{0} and \mathbf{a} have opposite signs. One is positive and the other is negative.
As \mathbf{v}_{0} and \mathbf{a} have opposite signs, it's perfectly reasonable to say that there's a certain value for \mathbf{v}_{0} where $\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}=0$. And that's the value you want to work out, as it's the launch velocity for the cage!

As v_{0} and a point in opposite directions, they will have opposite signs.

Vectors have DIRECTION!

You use positive and negative signs to show the direction.

there are no
Dumb Questions

Q:I still don't get how you can add two numbers together and get zero as your answer.
A - Numbers can be negative as well as positive. If one of the numbers is negative, it can work out like that. For example, if $\mathbf{v}_{0} t=-2$ and $1 / 2$ at $t^{2}=2$, then you have $-2+2=0$.
Q: Sorry ... I still don't quite see how two numbers added
together can be zero?
A:
: Suppose you spend $\$ 10$ entering a competition, then win a $\$ 10$ prize in it. You've earned $(-10)+10=0$ dollars. The sum of the (negative) entry fee and the (positive) prize win comes out to a zero balance.

Q: why would I want to add a negative number to a positive number when I can just do a subtraction?

A:: Because when you have an equation like $\mathbf{x}=\mathrm{x}_{0}+\mathrm{v}_{0} t+1 / 2 a t^{2}$, you don't know in advance which variables are positive and which are negative. But when you put the numbers in, it'll work out as long as you get the minus signs right.
$Q:$
So the variables x_{0}, x, v_{0}, v and a could all be negative because they're vectors?
A:
: Yes, vectors have both a size and a direction. When all of your vectors lie along one line (like in this case, they're either pointing up or down) then you can choose to make one direction positive and the other direction negative.

Q: And I get to choose whatever direction I want to be positive? Either up or down?
A:
: Yes, as long as you're consistent throughout. But it's usual to make up the positive direction so that when you plot a graph, up on the graph corresponds to up in real life.

Vectors in opposite directions have opposite signs.

Q: What would happen if I made down the positive direction instead?
A : : The math would all still work out, as long as you make sure you're consistent. You just have to be careful to do the right thing when you're adding or subtracting a negative number.

Q: How would I figure out if I'd made a mistake with the minus signs?

A: You can see if your answer SUCKs. If a minus sign has gone astray, then the answer may end up a very different size from what you'd expect. So make sure you have a rough idea of what size your answer's going to be at the back of your mind, then compare it with the result of your calculation.

Q: OK, so I think I have the negative numbers, vectors and directions all figured out. Is there anything else I should do?

A: As you've never used this equation before to deal with something going up then down, it wouldn't hurt to sketch some graphs to confirm that it's going to be OK ...

Frank: I guess we need to do some graphs that show it's OK to use the equation to deal with the cage going straight up in the air and back down again.

Jim: But that's gonna be difficult. We usually draw graphs of experimental results, but I don't think we can do that this time. We only get one shot at launching the cage, and if we miniaturize the experiment, we can't really measure the launch speed.

Joe: Hmmm. Maybe we could sketch graphs of what we know happens to something that goes up and down. Then put some numbers into the equation and plot it to see if it comes out the same shape - like doing that GUT check thing - comparing the equation with the graph by trying out some values.

Frank: But how do we sketch a displacement-time graph for something that goes up then down? Is it curved? Is it straight? Does the shape depend on whether it's going up or down? I don't think we can do that straight off.

Joe: We could start off with the acceleration-time graph. We know that has a constant value of $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Jim: You mean $-9.8 \mathrm{~m} / \mathrm{s}^{2} \ldots$ up is positive, so down is negative!
Joe: Yeah, well, acceleration is rate of change of velocity. So the value of the acceleration is the slope of the velocity-time graph. The value of the acceleration is constant: $-9.8 \mathrm{~m} / \mathrm{s}^{2}$, so the slope of the velocity-time graph must also be constant at $-9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Frank: Err, a negative slope?! What would that look like?!
Jim: I guess it would go the other way, down from left to right instead of up?! Like going downhill instead of uphill?

Joe: That sounds about right. Then when we have the velocitytime graph, we can use the fact that velocity is rate of change of displacement. So the value of the velocity is the slope of the displacement-time graph.
Frank: Which lets us draw a displacement-time graph as well.

Don't worry about numbers here - the important thing is the SHAPES of the graphs.

Jim: Great!

Equations represent reality. If you sketch a graph of what happens in real life, it should be the same shape as the graph for your equation.

Slope Up Close
The same principle applies to the slope of a displacement-time graph and the value of the velocity

Since velocity is a vector, it can be either positive or negative. The slope of a velocity-time graph shows you the value of the acceleration.
If the change in velocity is positive, then the graph slopes up, and the acceleration is positive. If the change in velocity is negative, then the graph slopes down, and the acceleration is negative.

If a graph goes up, its slope is positive.

Slop of velo graph is negative, so value of acceleration is negative, i.e., it's accelerating in this direction.

If a graph goes down, its slope is negative.

You can use one graph to work out the shapes of the others

Acceleration, velocity, and displacement are all related to each other. If you have the graph of one of them and some initial values for the others, you can use these to sketch the shapes of the other graphs.

You know that the launched cage has a constant acceleration of $-9.8 \mathrm{~m} / \mathrm{s}^{2}$. Since the value of the acceleration is constant and negative, the slope of the velocity-time graph must be constant and negative too.

Use the value of your acceleration-time graph to sketch the shape of the velocity-time graph. Try to imagine the velocity of the cage as it goes up then back down again. The

> If you launch an object straight up, the object's velocity $=0$ at the top of its flight.

Yes. The second half is like dropping something from a stationary start.

What goes up must come down! At its highest point, the cage isn't going up any more and hasn't quite started coming down yet. The top of its flight is a 'special point' where its velocity is zero.

So for the second part of its motion, when it's coming back down, the cage behaves exactly as if it's been dropped from its maximum height.

The graph is the same shape as last time, though it's the other way up because this time up is positive.
there are no Dumb Questions

Q:I can't quite believe that the velocity-time graph is just a diagonal line like that. It seems too perfect.

A:The acceleration is constant and negative. So the slope of the velocity-time graph also has to be constant and negative. This is another way of saying that the velocity-time graph is a straight line graph that slopes downwards.

Q:How do you know where to start drawing the diagonal line? You could put it anywhere on the velocity-time graph!
A: Good point! If you didn't know that the initial velocity was \mathbf{v}_{0}, then you wouldn't know where to start drawing the graph.

Q:How do you know what angle to slope the velocity-time graph at?

A:: This is just a sketch graph, with no scales on the axes, so the angle doesn't matter much here. Just make sure the line goes through $\mathbf{v}=0$ when the object is at the top of its flight.

If you were plotting a velocity-time graph with values on your axes, then you'd make its slope the same as the value of the acceleration-time graph.

Q:. You said that the line should go through $v=0$ when the object is at the top of its flight. How can something's velocity be zero when it's up in the air?
A: There's a split second when the object reaches its maximum height. There, the object's just stopped going up and is just about to come down. At that point, the velocity is zero.

Q:- So when the velocity of a launched object is zero, does that mean the displacement's zero as well?

A :: No ... it means that the slope of the displacement-time graph is zero.

Q:So you're saying that we can work backwards from the acceleration-time graph to draw the other graphs?
A: : Close but not quite - the cage started with velocity \mathbf{v}_{0} and at $\mathbf{x}_{0}=0$. If you hadn't known these initial values, you wouldn't have known where to start sketching the graphs.

Q:

- But I knew some start values, so the sketches are OK. Can I get on with plotting the equation $x=x_{0}+v_{0} t+1 / 2 a t^{2}$ to see if it's the same shape as the sketch?
A: - Well, alright then ...

Is a graph of your equation the same shape as the graph you sketched?

You can work out whether it's OK to use the equation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 t^{2} t^{2}$ by plotting it on a graph. If the shape is the same as the shape of the graph you already sketched, then you're good to go!

You're already reasonably sure that it's OK to use the \checkmark equation, as it's supposed to work when the acceleration is constant. But you want to make ABSOLUTELY sure!

As you're just doing a GUT check by drawing a graph and trying some values to see the shape of the graph, it's OK to just choose a value for \mathbf{v}_{0}. After all, you're expecting the cage to go up and eventually come back down again whatever \mathbf{v}_{0} is (as long as it's positive!), so if the equation gives you that shape, it'll be fine to use it to give the Dingo an answer.

Back in chapter 7 , we tried out extreme values for the ' T ' of GUT to make sure that the equation we worked out there wasn't completely ridiculous. Here, we're trying some reasonable values to draw a graph. The principle is the same.

Sharpen your pencil

You want to plot a graph of your equation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$ to see if it's the same shape as the displacement an object has when it goes up then down in real life.

If the equation is correct, then it should produce the same shape of graph whatever value of \mathbf{v}_{0} you choose. We're going to get you to plot the graph of the equation using $\mathbf{v}_{\mathbf{0}}=\mathbf{1 5} \mathbf{~ m} / \mathbf{s}$.
a. Fill in the table of values.
b. Plot the graph. Is it the same shape as your sketch graph?

Horizontal axis	We're trying $c_{0}=15 \mathrm{~m} / \mathrm{s}$	Remember $a=-9.8 \mathrm{~m} / \mathrm{s}^{2}$	Vertical axis
time (s) K	$\longrightarrow v_{0} t$	$\rightarrow 1 / 2 a t^{2}$	$\longrightarrow x=x_{0}+v_{0} t+1 / 2 a t^{2}$
0.0	$15 \times 0=0$	$0.5 \times(-9.8) \times 0^{2}=0$	$0+0=0$
0.5			
1.0			
1.5			
2.0			
2.5			
3.0			

It's up to you to choose a scale for both axes of your graph.

Abstract

Plot of

\#

毋

Sharpen your pencil Solution

You want to plot a graph of your equation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$ to see if it's the same shape as the displacement an object has when it goes up then down in real life.

If you're adding or subtracting, quote your answers to the same number of decimal places as the least precise number.

If the equation is correct, then it should produce the same shape of graph whatever value of \mathbf{v}_{0} you choose. We're going to get you to plot the graph of the equation using $\mathbf{v}_{\mathbf{0}}=\mathbf{1 5} \mathbf{~ m} / \mathrm{s}$.
a. Fill in the table of values.
b. Plot the graph. Is it the same shape as your sketch graph?
It's the same shape as the sketch

time (s)	$v_{0} \mathrm{t}$	$1 / 2 \mathrm{at}^{2}$	$\mathrm{x}=\mathrm{x}_{0}+\mathrm{v}_{0} \mathrm{t}+1 / 2 \mathrm{at}^{2}$
0.0	$15 \times 0=0$	$0.5 \times(-9.8) \times 0^{2}=0$	$0+0=0$
0.5	$15 \times 0.5=7.5$	$0.5 \times(-9.8) \times 0.5^{2}=-1.23$	$7.5+(-1.23)=6.3(1 \mathrm{dp})$
1.0	$15 \times 1.0=15.0$	$0.5 \times(-9.8) \times 1.0^{2}=-4.90$	$15.0+(-4.90)=10.1(1 \mathrm{dp})$
1.5	$15 \times 1.5=22.5$	$0.5 \times(-9.8) \times 1.5^{2}=-11.0$	$22.5+(-11.0)=11.5(1 \mathrm{dp})$
2.0	$15 \times 2.0=30.0$	$0.5 \times(-9.8) \times 2.0^{2}=-19.6$	$30.0+(-19.6)=10.4(1 \mathrm{dp})$
2.5	$15 \times 2.5=37.5$	$0.5 \times(-9.8) \times 2.5^{2}=-30.6$	$37.5+(-30.6)=6.9(1 \mathrm{dp})$
3.0	$15 \times 3.0=45.0$	$0.5 \times(-9.8) \times 3.0^{2}=-44.1$	$45.0+(-44.1)=0.9(1 \mathrm{dp})$

You can check equations by picking values and plotting a graph.

Ready to launch the cage!

The cage is ready for lift-off! You've sketched graphs and tried numbers to confirm that the equation of motion $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 t^{2}$ works in any situation where the acceleration is constant - whether the cage starts off falling or going up.

So you're ready to rock and roll and work out a launch velocity for the Dingo!

> Once the launch velocity's input, all he needs to do is sit and wait for the Emu ...

Sharpen your pencil

The Dingo wants to catch the Emu by launching a cage straight up in the air as the Emu rounds a bend. The cage needs to land 2.0 s later, when the Emu reaches the launch site.

What should the initial launch velocity be?

$$
\begin{aligned}
& t=0 \mathrm{~s} \text { at start and } \\
& t=2.0 \mathrm{~s} \text { at end. }
\end{aligned}
$$

Up is positive direction.

This is a typical question. We've included the sketch you drew before so that you \qquad don't have to do that again.

Sharpen your pencil
 Solution

The Dingo wants to catch the Emu by launching a cage straight up in the air as the Emu rounds a bend. The cage needs to land 2.0 s later, when the Emu reaches the launch site.

What should the initial launch velocity be?
Need to know what v_{0} is for x to be 0 after 2.0 seconds.

$$
x=x_{0}+v_{0} t+1 / 2 a t^{2}
$$

Rearrange equation to say " $v_{0}=$ something."

$$
\begin{aligned}
v_{0} t & =x-x_{0}-1 / 2 a t^{2} \\
v_{0} & =\frac{x-x_{0}-1 / 2 a t^{2}}{t}
\end{aligned}
$$

$t=0$ s at start and
$t=2.0 \mathrm{~s}$ at end.
U_{p} is positive direction.

The initial launch velocity should be $9.8 \mathrm{~m} / \mathrm{s}(2 \mathrm{sd})$.

BULLET POINTS

- Always start with a sketch. Draw in all the sizes and directions of the things you already know plus the ones you want to find out.
- If your equations involve vectors, make sure you decide which direction is positive and stick to it!
- Be very careful when you're dealing with negative numbers!!
- If you already have any one of the displacementtime, velocity-time or acceleration-time graphs, you can work out the other two (though sometimes you may need initial values to know where to start drawing the other graphs).
- Before you 'reuse' an equation, think about the context you're trying to reuse it in. For instance, does it only work when the velocity is constant, and is the velocity constant in your situation?
- You can use your key equations $\mathbf{v}=\mathbf{v}_{0}+$ at and $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a t}^{2}$ in any situation where there's constant acceleration.

Dumb Questions

Q:- I did exactly the same as you did when I rearranged the equation to say " $\mathrm{v}_{0}=$ something" but got a different answer when I put the numbers in. Why was that?
A: You might need to spend a bit more time practicing with your calculator.

QIt doesn't seem fair that I do all that work then get marked wrong because I typed something in wrong.
A : : Understanding the physics is the most important thing - you won't get marked wrong for the whole problem. In many mark schemes, including AP Physics B, you get most of your points for setting up the answer using the fact that you understand the physics.

Q:- Is that why everyone's always going on about how I should show my work and not just write down an equation or an answer?
A : : Partly. If you show your work, it's easier for you to spot any little slip you might have made on the way through that caused your answer to turn out wrong.
Q: But people who are good at doing physics and math don't make little slips like losing minus signs or typing in the numbers wrong ... do they?
A : You'd be surprised! That's why we've been practising checking over your answers a lot, using things like SUCK and GUT. If you get into thinking in this way, it's like having a second line of defense against little mathematical slips.

Q:So you're saying that people who've more experience of physics than me make this kind of mistake as well? That's a relief!
A: Oh yes!

Q:So the main thing is that if I show my work, then I can go back and try to fix it if I spot something's not quite right with my final answer?
A: Exactly! It might be something as simple as inserting a minus sign and retyping the numbers into your calculator.
Q: . Can we go see how the Dingo's getting on with the launcher?
A: : Oh yes ..

If you show

 your work,it's easier to
spot - and
fix - little mathematical slips.

Your launch velocity of $5.0 \mathrm{~m} / \mathrm{s}$ is definitely right!

Fortunately, ACME has a rocket-powered hovercraft!

The Dingo goes back to ACIME and discovers a rocket-powered hovercraft, which is tailor-made for his needs! Usually, he can't run as fast as the Emu can, but now he can set the hovercraft to any speed he likes and use it to catch up with the Emu. More importantly, he can exactly match his speed with the Emu by setting the controls to $15 \mathrm{~m} / \mathrm{s}$. Perfect for passing on a party invitation!.

ACME Rocket-powered Hovercraft

- Top speed 43 m/s.
- Accelerates or brakes
- Financing Available. at $2.5 \mathrm{~m} / \mathrm{s}^{2}$.

However, the Dingo's a bit nervous, as he's tried this kind of thing before and it didn't go well. Before he goes anywhere near the hovercraft, he wants to know its stopping distance (the distance that it travels between applying the brake and the hovercraft actually stopping).

 on the hovercraft website - for example, the hovercraft's top speed. That's OK - sometimes you won't need to use all the values you're given.

You need to figure out the stopping distance of the hovercraft. So start off by drawing a sketch of the hovercraft. Do one sketch showing the moment that it puts on the brakes while traveling at $15 \mathrm{~m} / \mathrm{s}$. Do another sketch showing the moment that the hovercraft comes to a halt (before you release the brakes). Put on all the values you already know, plus the ones you want to find out.

Start $\rightarrow^{a}=-2.5 \mathrm{~m} / \mathrm{s}^{2}$

The acceleration is negative, and the velocity is positive. This shows you that the hovercraft is decelerating.
$t=0 \mathrm{~s}$
$x_{0}=0 \mathrm{~m}$

Finish

$t=$?

Make forwards the positive direction.

The acceleration is backwards because putting on the brakes makes the hovercraft's velocity change in the opposite direction from the direction the hovercraft is currently traveling in.

It's nearly always best to define $x_{0}=0$ as your starting point.

Jim: The equation we used last time is $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$, but we can't use that equation here because we don't know what t is.

Frank: Yeah, if there are two values you don't know and only one equation, then you can't work out what either value is.

Joe: The hovercraft's acceleration's constant at $2.5 \mathrm{~m} / \mathrm{s}^{2}$, isn't it?
Jim: MINUS $2.5 \mathrm{~m} / \mathrm{s}^{2}$! We made forwards the positive direction.
Joe: OK, the acceleration's $-2.5 \mathrm{~m} / \mathrm{s}^{2}$ then, but it's still constant, right?
So there's a second key equation of motion we can use, $\mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t$
Frank: I don't see how it helps - that equation doesn't have an x in it, which is what we want to work out!

So we need to get the stopping distance, x, for the Dingo's hovercraft.

Joe: But it does have t in it. We know \mathbf{v}_{0}, we know \mathbf{v}, and we know \mathbf{a} the only other variables in the equation. So we could use this equation to work out a value for t to use in the other equation.

Jim: That sounds good, but I don't want to have to work out an intermediate value for t every time I want to do something like this. Is there any way we could make a substitution to get a more general equation that we could use to work out something's displacement when we don't know the time interval? That would be really useful!

Joe: OK, I think you're right about trying to be general. It's more efficient, and we can use our new equation again and again to solve similar problems. But how are we going to wind up with an equation for \mathbf{x} that doesn't involve t ?

This problem

Make forwards the positive direction

> Working out a general equation is better than scribbling down a whole lot of intermediate values.

You can work out a new equation by making a substitution for t

So far, you know two key equations of motion:
$\mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t$ and $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$
You want to work out x, the stopping distance for the Dingo's hovercraft. The hovercraft is traveling with a particular velocity and braking with a particular acceleration. However, you don't know the time the hovercraft takes to stop, so you can't use $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$ directly.

However, you can form a new equation that doesn't involve t by rearranging your other equation to say " t = something" then making a substitution. Then you can plug the values in to get the stopping distance.

Rearrange the equation $\mathbf{v}=\mathbf{v}_{0}+\mathbf{a} t$ so that you can substitute for t in the equation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$ and end up with an equation for \mathbf{x} in terms of $\mathbf{v}_{0}, \mathbf{v}$, and \mathbf{a}.
You may find it helpful if you use parentheses (also called brackets) when you make the substitution, to keep everything that's equal to t together.

We're only asking you to make the substitution at the moment. You don't need to simplify the equation once you've substituted for t - we'll do that next.

Sharpen your pencil

Solution
Rearrange the equation $v=v_{0}+$ at so that you can substitute for t in the equation $x=x_{0}+v_{0} t+1 / 2 a t^{2}$ and end up with an equation for x in terms of v_{0}, v, and a.

You may find it helpful if you use parentheses (also called brackets) when you make the substitution, to keep everything that's equal to t together.
I have two equations to rearrange, then substitute to get rid of t : you're doing at each stage.

$$
\begin{array}{ll}
x=x_{0}+v_{0} t+1 / 2 a t^{2} & (1)< \\
v=v_{0}+a t & (2)< \\
\text { If you number your equations, it } \\
\text { makes it easier for you to refer to }
\end{array}
$$

Rearrange (2) to say " $t=$ something" then substitute it into (1).

$$
\begin{aligned}
a t & =v-v_{0} \\
t & =\frac{v-v_{0}}{a}
\end{aligned}
$$

(2')

Substitute (2') into (1).

$$
x=x_{0}+v_{0}\left(\frac{v-v_{0}}{a}\right)+1 / 2 a\left(\frac{v-v_{0}}{a}\right)^{2}<\begin{aligned}
& \text { Remember to include } \\
& \text { the 2 part, as the } t \text { you } \\
& \text { replaced was squared. }
\end{aligned}
$$

Number this equation 2' to show it's a rearranged version of 2 , not an entirely new equation.

Put this in parentheses to make it clear that EVERYTHING in the parentheses is to be multiplied by the other part of the term.

If you're asked to work out an equation, always give it in its most simple form.
Often when you do a substitution, you're left with a complicated-looking equation with some parentheses in it. You can make life a lot easier for yourself by multiplying out the parentheses and seeing if some of the terms in the equation cancel by dividing out or adding to zero.

You're going to spend the next few pages making this ugly equation more clear and simple so that you're less likely to make mistakes when you use it in the future.

> Clear, simple equations are nicer to work with than ugly, complicated equations.

Multiply out the parentheses in your equation

You need to know how to deal with an equation where you have stuff inside parentheses that you need to multiply by something that's outside the parentheses.

For example, $a(b+c)=a b+a c$

Doing this in steps makes it easier. First of all, multiply what's outside by the first thing in the parentheses.

Then multiply what's outside by the second thing in the parentheses (and so on if you have more than two things in there).

Remember - ac means a $\times c$.

Remember - when you write two things next to each other, there's an implied \times sign in between.

You can sort out one of the terms on the right hand side like this

The first term on the right hand side of your equation is:

Everything inside the parentheses needs to be multiplied by \mathbf{v}_{0}, which is outside the parentheses.

Sharpen your pencil

$x=x_{0}+v_{0}\left(\frac{v-v_{0}}{a}\right)+1 / 2 a\left(\frac{v-v_{0}}{a}\right)^{2}$
7
You can leave the terms we've greyed out as they are for the moment.

Sharpen your pencil
 Solution

Multiply out the parentheses for the first term on the right hand side of your equation.

$$
\begin{aligned}
& x=x_{0}+v_{0}\left(\frac{v-v_{0}}{a}\right)+1 / 2 a\left(\frac{v-v_{0}}{a}\right)^{2} \Rightarrow x=x_{0}+\frac{v_{0} v-v_{0}^{2}}{a}+1 / 2 a\left(\frac{v-v_{0}}{a}\right)^{2} \\
& \text { When you multiply a fraction by a number that's not a } \\
& \text { fraction, you only multiply the bit on the top of the fraction. }
\end{aligned}
$$

$$
\text { So the bit on the bottom stays as ' } a \text {,' and doesn't become ' } v o a \text {.' }
$$

You have two sets of parentheses multiplied together

The other nasty-looking term on the right hand side of your equation involves something inside parentheses squared. If you square something, it means you multiply it by itself.
For example, if you have $(a+b)^{2}$, it's the same as $(a+b)(a+b)$. You need to multiply everything in the first set of parentheses by everything in the second set of parentheses. This gives you $a^{2}+a b+a b+b^{2}$, which simplifies to $a^{2}+2 a b+b^{2}$ when you add the two lots of $a b$ together.

You can simplify your answer a bit by

Multiply every term in the second set of parentheses by every term in the first set of parentheses, one term at a time.

Then you can figure out your second term on the right hand side

The second term on the right hand side of your equation is:

$$
1 / 2 \mathbf{a}\left(\frac{\mathbf{v}-\mathbf{v}_{0}}{\mathbf{a}}\right)^{2}
$$

Because the stuff in the parentheses is squared, this is the same as writing

$$
1 / 2 \mathbf{a}\left(\frac{\mathbf{v}-\mathbf{v}_{0}}{\mathbf{a}}\right)\left(\frac{\mathbf{v}-\mathbf{v}_{0}}{\mathbf{a}}\right)
$$

Everything in the second set of parentheses needs to be multiplied by everything in the first set of parentheses, like in the example on the opposite page.

Sharpen your pencil

 Do the top of the fractions first. Multiply everything on the top by everything on the top. Then do the bottom of the fractions.Multiply out the parentheses for the second term on the right hand side of your equation.

It's probably easiest to do the squared part inside the parentheses first (similar to the example on the opposite page), then multiply everything through by $1 / 2 \mathbf{a}$, which is outside the parentheses.

Multiply out the parentheses for the second term on the right hand side of your equation.
It's probably easiest to do the squared part inside the parentheses first (similar to the example on the opposite page), then multiply everything through by $1 / 2 a$, which is outside the parentheses.

$$
x=x_{0}+\frac{v_{0} v-v_{0}^{2}}{a}+1 / 2 a\left(\frac{v-v_{0}}{a}\right)^{2} \quad \begin{aligned}
& \text { It's easiest to write out the } \\
& \text { thing in the parentheses } x \text { itself } \\
& \text { like this, so you can multiply out } \\
& \text { the parentheses more easily. }
\end{aligned}
$$

$$
x=x_{0}+\frac{v_{0} v-v_{0}^{2}}{a}+1 / 2 a\left(\frac{v-v_{0}}{a}\right)\left(\frac{v-v_{0}}{a}\right)
$$

$$
\text { negative } \times \text { negative }=\text { positive }
$$

$$
\begin{aligned}
& x=x_{0}+\frac{v_{0} v-v_{0}^{2}}{a}+1 / 2 a\left(\frac{v^{2}-2 v v_{0}+v_{0}^{2}}{a^{2}}\right) \quad \begin{array}{l}
\text { so }\left(-v_{0}\right) \times\left(-v_{0}\right)=v \\
\text { Now you have to multiply everything }
\end{array} \quad \begin{array}{l}
\text { fraction, } a \times a=a^{2}
\end{array}
\end{aligned}
$$ inside the brackets by $1 / 2 a$..

... but the a on the top and the a^{2} on the bottom cancel to leave everything divided by a.

Where you're at with your new equation

You're working out an equation that'll give you the stopping distance for the Dingo's new rocket-powered sled given \mathbf{v}_{0}, its initial velocity. However, the only equation you had for \mathbf{x}, the displacement, included t, the time it would take to stop. But you don't know what t is.

You're already most of the way through working out a new equation for \mathbf{x} that doesn't involve t by rearranging some equations you already knew and substituting in for the variable t to get rid of it.

You want the equation to be as clear and simple as possible so that you're less likely to make mistakes when you use it. You just multiplied out the parentheses to try to simplify the equation. But it doesn't look particularly simple at the moment!

You need to simplify your equation by grouping the terms

Now that you've multiplied out the parentheses, your equation has a lot of terms in it! If you group together all the terms that are the same letter (or letters multiplied together), you'll be able to simplify your equation.

For example, if you have the equation $a=b+c-b-2 c$, you have b and $-b$ on the right hand side. When you group them together, they become $b-b=0$. You also have c and $-2 c$. When you group them together, they become $c-2 c=-c$
Written out, the work looks like:

$$
\begin{aligned}
& a=b+c-b-2 c \\
& a=b-b+c-2 c \\
& a=-c
\end{aligned}
$$

If you do something similar with the equation for the hovercraft's stopping distance, it'll be a lot clearer to work with and less prone to error. We don't want the Dingo to get hurt when he only wants to invite the Emu to his birthday party.

Although we said that you don't need lots of algebra to pass physics, we'd rather you understand as much as possible. If you manage to get your head around this, you're setting yourself up to do really well if you take an exam.

It's important to be able to do things like multiplying out parentheses now so that you won't feel lost or confused later on. It also means that you wont have to completely skip parts of exam questions where you understand the physics perfectly because they involve algebra at a similar level to this.

You can use your new equation to work out the stopping distance

You've worked out an equation you can use to calculate the stopping distance of the hovercraft for the Dingo.

A rocket-powered hovercraft is traveling at $15 \mathrm{~m} / \mathrm{s}$. When the brakes are applied, it decelerates at a rate of $2.5 \mathrm{~m} / \mathrm{s}^{2}$. What is its stopping distance?

Sharpen your pencil
 Solution

A rocket-powered hovercraft is traveling at $15 \mathrm{~m} / \mathrm{s}$. When the brakes are applied, it decelerates at a rate of $2.5 \mathrm{~m} / \mathrm{s}^{2}$. What is its stopping distance?

$$
\begin{aligned}
x=x_{0}+\frac{v^{2}-v_{0}^{2}}{2 a} \Rightarrow x= & +\frac{0^{2}-15^{2}}{2 x(-2.5)} \\
x & =45 \mathrm{~m}(2 \mathrm{sd})
\end{aligned}
$$

The stopping distance is 45 meters (2 sd).

There are THREE key equations you can use when there's constant acceleration

As well as a stopping distance to pass onto the Dingo, you now know the three key equations that will acceleration is constant. cars, boats - you name it.

Now that's a real superpower!

This is the equation you just worked out. it's sometimes called the "no time" equation because the variable ' t ' doesn't appear in the equation.
enable you to deal with any problem where the

Falling things, launched things, rocket hovercrafts,

This is exactly the same equation, but rearranged so that there are no fractions in it. We've mentioned it here because it's the version of the equation you'll find on equation sheets.

Equations of motion

The three key equations for something with constant acceleration.

$$
v=v_{0}+a t
$$

$$
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
$$

$$
x=x_{0}+v_{0} t+\frac{1}{2} a t^{2}
$$

Chapter 8

That's right - math is just another tool to help you get better at physics.

Most physics books assume you can already do algebra to use the equations they give to you readybaked. This book is different. You've gradually been introduced to a lot of algebra in the context of physics so that you can use it as a tool to help you understand physics the best you can.

If you're not so sure of some of the math, you can still do OK, but it's up to you to practice anything you initially find difficult until you get better at it.

there are no

Q:- So am I supposed to memorize all of these equations? That's an awful lot! I thought this was supposed to be about understanding, not memorization!

A:The first equation, $\mathbf{v}=\mathbf{v}_{0}+\mathbf{a}$, says that your new velocity is the same as your old velocity, plus the effect of your acceleration. You don't care about \mathbf{x}_{0} or \mathbf{x}.

The second equation, $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 a^{2}$, says that your new displacement depends on your old displacement, your initial velocity and your acceleration, as well as the length of time you've been going for. You don't care about \mathbf{v}.

The third equation, $\mathbf{v}^{2}=v_{0}{ }^{2}+2 a\left(x-x_{0}\right)$, is the one you just worked out. It gives you your final velocity when you don't know t, the time you're traveling for.

$Q:$So if the best way to learn equations is to do lots and lots of problems, how come Head First Physics doesn't have hundreds of examples at the end of each chapter, like most other physics books do?
A: : One reason is that you're learning and doing problems throughout each chapter.

This book is about trying things out while you're learning. You use the concepts as you go along so that you really understand the physics, rather than the 'read along and nod' method that most textbooks use. There are plenty of resources with practice questions out there - do spend time working through lots of problems to reinforce what you're learning here.

Q - So if I keep a lookout on the Head First website, will there be something up there to help me practice?
A: Yes, we'll be producing some online resources to go with the book.

you are here
319

The rocket-powered hovercraft is a great success...

You need to work out the launch velocity that gets the Dingo out of the Grand Canyon!

The Dingo's fallen over a cliff, but he had a soft splash landing. Fortunately, he still has his ACME launcher. And a new idea! If he launches himself into the air so that the top of his flight is exactly level with the top of the cliff, he should be able to pass the Emu the party invitation - but in a situation where the Emu doesn't feel scared.

The thing is that the Dingo doesn't know what what his launch velocity should be. If he sets the launch velocity too low, he won't make it up to the edge. If he sets the launch velocity too high, he'll still be going up when he reaches the edge and might not have time to pass
 on the invitation.

What should the Dingo set as the launch velocity this time?

Do as much of this as you can from memory, then turn back to page 314 to copy them down.

The Dingo is stuck at the bottom of the cliff with a launcher. If the cliff is 7.00 m high at this point, what launch speed will mean that the top of his flight is at the top of the cliff?
a. Start with a sketch! Draw everything you already know about.
b. Write down your three key equations for doing these kinds of problems. Next to each variable in each equation, put a ? if you want to find it out, a tick if you know it, and a cross if you don't know it.

This is an important problem-solving skill.

[^2]
Sharpen your pencil Solution

Do as much of this as you can from memory, then turn back to page 314 to copy them down.

The Dingo is stuck at the bottom of the cliff with a launcher. If the cliff is 7.00 m high at this point, what launch speed will mean that the top of his flight is at the top of the cliff?
a. Start with a sketch! Draw everything you already know about.

b. Write down your three key equations for doing these kinds of problems. Next to each variable in each equation, put a ? if you want to find it out, a tick if you know it, and a cross if you don't know it.

$$
\underset{x}{J}={\underset{x}{x}}^{\prime}+\dot{v}_{0} t+1 / 2 a t^{2} x \quad \begin{aligned}
& \text { This is an important } \\
& \text { problem-solving skill. }
\end{aligned}
$$

c. Do you think you can do this problem straight off, or do you need some extra information?

All of the equations have something else in them that I don't know (either v or t, or both), as well as v_{0} (which is what I want to find out). So I need some extra information to do the problem.

Wouldn't it be dreamy if I could work out var \dagger somehow, so I could use the equations to get v_{0}. But I know it's just a fantasy ...

Sharpen your pencil

Now that you've spotted the special point, use your extra information that $\mathbf{v}=0$ at the top of the Dingo's flight together with what you did on the opposite page to calculate what his launch velocity should be.

You should add $v=0$ to your sketch, and tick 'v' every time you see it in an equation.

Now that you've spotted the special point, use your extra information that $v=0$ at the top of the Dingo's flight together with what you did on the opposite page to launch him out of the Grand Canyon.

$$
v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \quad v_{0} \text { is now the only } \quad \text { in this equation. }
$$

Rearrange to say " $v_{0}=$ something" This works out as

$$
\begin{array}{ll}
v_{0}^{2}=v^{2}-2 a\left(x-x_{0}\right) & \text { negative } x \text { negative } x \text { positive }=\text { positive } \\
v_{0}=\sqrt{v^{2}-2 a\left(x-x_{0}\right)}=\sqrt{0^{2}-2 \times(-9.8) \times(7.00-0)}=\sqrt{137.2}
\end{array}
$$

$$
v_{0}=11.7 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
$$

The Dingo needs to be launched at $11.7 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})$.

The launch velocity's right!

You just used the fact that $\mathbf{v}=0 \mathrm{~m} / \mathrm{s}$ at the top of the cliff to work out that the Dingo's launch velocity should be $11.7 \mathrm{~m} / \mathrm{s}$.

While he's in the air, a safe landing area inflates.

But the Dingo doesn't like getting wet, and wants a better plan for landing than splashing into the river again. He has an ACME inflatable landing area and wants to press its inflate button at the same time as launching himself up in the air.

The landing area takes 1.00 s to inflate. How long will the Dingo be in the air for? Will the landing area have enough time to inflate before he comes back down?

So we need to work out the time the Dingo will be in the air for. That shouldn't be too bad.

Jim: Yeah, we already know a lot of values! \mathbf{x}_{0} and \mathbf{x} will both be zero (as he's starting and finishing at the bottom of the canyon). And $\mathbf{v}_{0}=11.7 \mathrm{~m} / \mathrm{s}$.
Joe: Not forgetting $\mathbf{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$. I think we know more values right now than we've done for any other problem!
Frank: So which equation can we use? We don't know what v is, so we can't use either of the equations with v in them.

Jim: Well, that leaves $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$, which should be cool. We know $\mathbf{x}, \mathbf{x}_{0}, \mathbf{v}_{0}$, and $\mathbf{a} \ldots$.. that leaves only t, which is what we want to calculate!

Joe: One equation, one unknown - sounds ideal!

Frank: So I guess we rearrange the equation so that it says " $t=$ something."

Jim: Yeah, let's get on with it!

Sharpen your pencil

a. Try rearranging the equation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$ to say " $t=$ something," so you can use it to work out the time it takes the Dingo to go up and back down again.
b. Write down your thoughts about whether this idea will work or not.

Sharpen your pencil

Solution
a. Try rearranging the equation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a}^{2}$ to say " $t=$ something," so you can use it to work out the time it takes the Dingo to go up and back down again.

$$
\begin{aligned}
x & =x_{0}+v_{0} t+1 / 2 a t^{2}
\end{aligned} \begin{array}{ll}
\text { Try to get this } t \text { on its own } \\
\text { to say "t }=\text { something" }
\end{array}
$$

b. Write down your thoughts about whether this is a good idea or not. This isn't going to work. If you try to rearrange to say " $t=$ something," there's a t^{2} on the other side. And if you get the t^{2} on its own to take a square root, there'll still be the t on the other side. You can't simplify the equation enough to say " $t=$ something."

Strictly speaking, this is possible if you use something called the quadratic formula. If you already know how to do this, then feel free to use this method. But if you've never heard of the quadratic formula before, don't worry. You're about to learn a much less complicated way ...

You need to find another way of doing this problem

Your equation $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$ contains two terms with \boldsymbol{t} in them, $\mathbf{v}_{0} t$ and $1 / 2 t^{2}$. Because one of the terms has t in it, and the other has t^{2} in it, there's no easy way to rearrange your equation to say " $t=$ something" because the t and t^{2} won't cancel by adding to zero.

However, if either $\mathbf{v}_{0}=0$ or $\mathbf{a}=0$, then one of these terms would disappear. This means you'd be able to rearrange the equation to say " $t=$ something" and use it to calculate the value of t.

What would happen to your equation if different variables were zero? Would this make the

 equation easier to solve?

If $\mathbf{a}=0$, then the equation becomes $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t$, which is the equation you worked out before for something that moves with a constant velocity without accelerating. But the acceleration isn't zero in this scenario.

But if $\mathbf{v}_{\mathbf{0}}=\mathbf{0}$, then the equation would simplify to $\mathbf{x}=\mathbf{x}_{0}+1 / 2 \mathbf{a} t^{2}$, which you can rearrange to say " $t=$ something." That's incredibly useful!

If only there was a way of reframing the problem so that $\mathbf{v}_{0}=0$, then all of this would be possible \ldots

b. The Dingo's safety device takes 1.00 s to inflate. Will the safety device have inflated before the Dingo lands?

$$
\begin{aligned}
& \text { The top of } \\
& \text { the flight } \\
& \text { path is } \\
& \text { exactly } \\
& \text { HALFWAY } \\
& \text { through the } \\
& \text { flight. }
\end{aligned}
$$

Now there's only
t^{2} and no t, so
this is an equation \uparrow
you can solve.

$$
t=\sqrt{\frac{2\left(x-x_{0}\right)}{a}}=\sqrt{\frac{2(7.00-0)}{9.8}}=\underline{ } 1.20 \mathrm{~s}(3 \mathrm{sd})
$$

b. The Dingo's safety device takes 1.00 s to inflate. Will the safety device have inflated before the Dingo lands?

You get the same answer if you make "up" the positive direction, but there's more risk of making a mistake with minus signs.

The time it takes to go up and down is DOUBLE the time it takes to fall from the top of the flight path.

At a single height, a launched object has the same speed whether it's going up or down.

The Dingo left the ground with a speed of $11.7 \mathrm{~m} / \mathrm{s}$ and a velocity of $11.7 \mathrm{~m} / \mathrm{s}$ upwards. Since going up then down again is symmetrical, his speed at the bottom will also be $11.7 \mathrm{~m} / \mathrm{s}$, and his velocity will be $11.7 \mathrm{~m} / \mathrm{s}$ downwards.

Also, at any displacement in his flight, his speed will be the same whether he's going up or down. This is another special symmetry thing that you can sometimes use to solve problems. If you start and end at the same height, then $\mathbf{v}=-\mathbf{v}_{0}$.

Q: So why was I trying to find a special point where $v_{0}=0$? I wasn't quite sure about that bit.
A : You want to use the equation $\mathrm{x}=\mathrm{x}_{0}+\mathrm{v}_{0} t^{t}+2 / 2 \mathrm{a}^{2}$ to calculate t. But because it has both t and t^{2} in it, you cant easily rearrange it to say " $t=$ something."

But the term with the t in it is actually $\mathbf{v}_{0} t$. So if you can reframe the problem into one where \mathbf{v}_{0} is zero, you lose that term entirely and can solve the equation to find t.
there are no
Dumb Questions
Q: But couldn't 1 just use the quadratic formula to solve for t without having to do all of that symmetry stuff?
A: If you already know how to solve quadratic equations like this one, that's fine. Feel free to use any method you understand.

But spotting the symmetry and working out how long it takes to fall, then doubling it is actually easier mathematically and a very useful shortcut to know about. Symmetry makes hard problems easier.

Don't worry about what this is if you don't already know. You won't need to use it if you can spot symmetry in problems!

Q: But what if I'm in a situation where I can't make $v_{0}=0$? How do I solve that kind of equation then?
A: In that case, it's usually most straightforward to work out a value for \mathbf{v}, so you can use the simpler equation $\mathbf{v}=\mathbf{v}_{0}+\mathbf{a t}$. You'd do this using the other one of the three key equations, $\mathbf{v}^{2}=\mathbf{v}_{0}{ }^{2}+2 \mathbf{a}\left(\mathbf{x}-\mathbf{x}_{0}\right)$.

Q. Ack. I have trouble remembering these equations.

A: - Don't worry - it's on your equation table. And you'll naturally memorize it as you practice using it.

You'll also learn another approach to doing a problem like this in chapter 14, which you can use instead if you want to.

Symmetry makes hard problems easier.

The start of a beautiful friendship

Thanks to you, the Dingo has managed to deliver

his party invitation. And the party marks the start of
a beautiful friendship.

Question Clinic: The "Sketch a graph" or "Match a graph" Question

Sometimes you'll be asked to sketch a graph or match a sketched graph with an equation or story. The point is to show that you understand what's going on. Sketching a graph will usually be part of a free response question, and choosing graphs that match stories or scenarios is a standard style of multiple choice question.

Make a note of initial DIRECTIONS, and decide which direction to make positive.

Make a note of any initial VALUES, as you should include them on your graph.
the graphs in this order. The easiest one is the acceleration, as it's a constant $-9.8 \mathrm{~m} / \mathrm{s}^{2}$. So start with that and work backwards.
2. A cage is propelled straight up from ground level by a launcher with initial velocity v_{0}. Sketch graphs of:
a. The displacement
b. The velocity
c. The acceleration
of the cage with respect to time, from the moment it's launched until it hits the ground again. State any assumptions you make.

This means get the SHAPE right. Don't plot only put on values you know/have been given.

If you're asked to sketch more than one graph (like displacement, velocity, and acceleration), it's usually best to work out which graph is easiest to draw, and start with that one. You can then work out what the others look like by thinking about values and slopes.

Question Clinic: The "Symmetry" and "Special points" Questions

Some of the questions you'll be asked about moving things will have one simple step. But in many, you'll have to
 spot symmetry to take a shortcut - or to make the problem solvable at all. You may also need to spot 'special points' that give you extra information because of symmetry - like $\mathbf{v}=0$ at the top of something's flight, or the fact that something's speed will be identical at the same height whether it's going up or coming down (though the direction of the velocity is different).

It starts and finishes at the same HEIGHT, so it will have the same SPEED ALWAYS START WITH A SKETCH!! both times, just in opposite directions.
3. A cage is propelled straight up from ground level by a launcher with initial velocity $\mathrm{v}_{0}=10 \mathrm{~m} / \mathrm{s}$. If it goes up then comes back down again to ground level,
a. What is the value of its velocity just before it hits the ground
This is asking for a time. If you already know the height, you could work out how long it takes to fall that far and double it.

But here you know v and v_{0} already (as $v_{0}=-v$), so
you can use $v=v_{0}+$ at.

How long does it remain in the air for?
C. What is the maximum height it reaches?

You know that the maximum height is a 'special point' where the velocity is zero and that it gets there in half the time it takes to go up and down..

DO ANOTHER SKETCHI! As this part of the problem has a DIFFERENT END POINT (the top of the flight path instead of ground level), some of your variables will have different values.

Equations of motion

Three equations that you can use to calculate the motion of an object that is moving with constant acceleration.
\square Symmetry In physics, the second half of something's motion sometimes mirrors the first. For example, going up into the air then back down again is symmetrical.

Your Physics Toolbox
You've got Chapter 8 under your belt and added some equations, math techniques and problem-solving skills to your tool box.

Equations of motion
The three key equations for something with constant acceleration.

$$
\begin{aligned}
& v=v_{0}+a t \\
& x=x_{0}+v_{0} t+\frac{1}{2} a t^{2} \\
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)
\end{aligned}
$$

Vectors: positive direction
When you're dealing with vectors that all lie along one line, you have to decide which direction is positive.
Usually, you'd make up positive so that your graphs come out the same way round as real life.

If all your vectors point down (e.g., if an object is falling), then making down positive helps to reduce errors with minus signs.

Parentheses
When you're multiplying out parentheses, you multiply every term inside by every term outside:

$$
\begin{aligned}
& a(b+c)=a b+a c \\
& (a+b)(a+b)=a^{2}+2 a b+b^{2}
\end{aligned}
$$

Which equation of motion should I use?
If you don't know which equation of motion to use, write down all three of them. Tick the variable you know values for, cross the variables you don't know, and put a ? by the variable you want to find out. For example:

Symmetry
When an object goes up then down, the up part and the down part of its motion both take the same TIME.
When something goes up then down, its VELOCITY has the same size at any one height regardless of whether the direction of the velocity is up or down.

9 triangles, trig and trajectories

.

 * Going two-dimensionalSo I was, like, "When's this physics book ever gonna get onto the REAL stuff." And then it hit me right between the eyes ...

So you can deal with one dimension. But what about real life?
Real things don't just go up or down - they go sideways too! But never fear - you're about to gain a whole new bunch of trigonometry superpowers that'll see you spotting right-angled triangles wherever you go and using them to reduce complicated-looking problems into simpler ones that you can already do.

Camelot - we have a problem!

The Head First castle is in imminent danger! Back when it was built, the longest ladder available from Sieges-R-Us was 15.0 m long. So the castle was designed with a moat 15.0 m wide and a wall 15.0 m high, making it impossible for anyone to put a ladder from the edge of the moat to the top of the wall.

But the Sieges-R-Us website has just been updated with a new top of the range 25.0 m ladder. It's only a matter of time before someone comes to attack your castle armed with the new ladder, and your current defense system just isn't big enough...

If you don't act quickly, someone will turn up with the new ladder, and you'll be toast. It's time to design a new castle defense system!

It's a lot easier to dig a wider moat than it is to build a higher wall.

How wide should you make the moat?

The best way of defending the castle against the 25.0 m ladder is to make the moat wider. The moat is already 15.0 m wide - so how much wider do you need to make it?

You could try making the moat the same size as the ladder - 25.0 m - so that the distance from the edge of the moat to the bottom of the wall is the same length as the ladder. That would make sure that attackers couldn't simultaneously put one end of the ladder at the edge of the moat and the other end on the top of the wall.

But time is of the essence, and you don't want to start out digging a 25.0 m moat if a narrower moat will do the same job. The important thing is the distance from the edge of the moat to the top of the wall. If that's more than 25.0 m , there won't be anything to lean the ladder on. And you might be able to achieve that with a narrower moat... a sketch should help.
a. Draw a sketch of the 15.0 m castle wall, 25.0 m ladder, and extended moat, where the ladder is only just too short to reach the top of the wall from the side of the moat.
(This sketch is just a quick drawing to get the visual parts of your brain working-the lengths on it don't have to be accurate as long as everything's labelled correctly.)
b. What shape does your sketch resemble?

Looks like a triangle, yeah?

You can turn your complicated-looking castle, ladder, and moat sketch into a more simple picture of a right-angled triangle, with a 90° angle (a right angle) between the wall and the moat. You already know the lengths of two of the triangle's sides and want to find out how long the third side is.
You could figure this out by ordering a 25.0 m ladder, putting one end at the top of the wall, and seeing where the ladder touches the ground. But the attackers might arrive with their new ladder first!

If you don't want to wait, you can measure 25.0 m of rope, tie one end to the top of the wall, and see where it touches the ground when you pull it tight.

But that still involves a lot of steps and equipment.

A scale drawing can solve problems

\square

This is one way of getting
At the moment, your drawing is only a sketch - the triangle's side lengths aren't to scale (though the lengths you've written beside them are correct).

A scale drawing is one where you say something like " 1 cm on the drawing $=1 \mathrm{~m}$ in real life." You can then do the same as you would with the 15.0 m castle wall and 25.0 m ladder, except with 15 cm and 25 cm !

You can solve some problems with scale drawings, but it takes time and effort.

Start off by making a right-angle to represent where the wall meets the moat. Then measure up 15 cm to represent the wall.

Now, you want to swing the ladder down and see where it hits the ground. So set a pair of compasses to 25 cm ...

... and swing down from the top of the wall to meet the ground line. Now you can measure the most economical moat width.

That's a lot of effort just to work out a simple length though ...

Sweep Compasses around until you cross the horizontal line.
 the best moat width from a triangle drawing. But it's not the best way.

Pythagoras' Theorem lets you figure out the sides quickly

Pythagoras' theorem is an equation for solving this kind of problem without waving ladders around or making a super-accurate drawing. You only need to know the lengths of two sides, and the equation will tell you the third.

The longest side of the triangle is opposite the biggest angle (the right angle). This side has a special name and gets called the hypotenuse.

If you square the length of the hypotenuse, the answer is equal to the answer you get if you square the length of the other two sides individually, then add the squares together.

That's very wordy. So here's the equation - if you label the sides of your triangle a, b and c (where c is the hypotenuse) then Pythagoras' Theorem says:

It doesn't really matter which letters you use for the sides. We've chosen the same letters as the AP physics equation table.

Pythagoras only works for right-angled triangles.

> If you already know two sides of the right-angled triangle, $\mathrm{P}_{\text {y thagoras }}$ gets you the third.

If the triangle is right-angled:
The square of the hypotenuse is equal to the sum
of the other two sides squared* $\mathbf{c}^{2}=\mathbf{a}^{2}+\mathbf{b}^{2}$

there are no
 Dumb Questions

Q:- You've called Pythagoras a theorem and an equation so far. And l've seen things like that called a formula too. So which is it?

A:

- Equation, formula, and theorem mean the same thing really. They all describe relationships where you write down "something = another thing."

Q: How do I try to remember Pythagoras? I mean, how do I remember which sides are a, b and c, then what order to put them in the equation?
A: : If you can remember the form of the equation, you don't need to remember the letters. The hypotenuse is the longest side, whatever letter you use to name it. So hypotenuse goes on the left of the equation.

Q: What if I know the hypotenuse and want to calculate the length of one of the other sides?

A:
: You can rearrange the equation so that the side you don't know is on its own on the left.

Q: So where does Pythagoras' Theorem come from? Aren't we going to go through proving it?
A: It's only really worth going into understanding where an equation comes from if the understanding you gain helps you see how the world works, so you can solve physics problems (and other problems) better.

Being able to prove Pythagoras' Theorem doesn't help with this, so we've not gone into that here.

And on the right of the equation, you square each of the other sides, then add them together. You can think about the S in SUCK - size matters. So it's the square of the longest side that goes on its own.

Right-angled triangles are going to be one of your most important physics tools. There are lots of right angles in physics, often between the horizontal ground and vertical walls or vertical acceleration vectors that exist as a result of gravity.
Keep your eyes open for them as this chapter progresses ...

Sketch + shape + equation $=$ Problem solved!

Back to the castle and the new Sieges-R-Us ladder!

You started with a sketch and spotted a right-angled triangle shape in it. After toying with the idea of a scale drawing, Pythagoras popped up with an equation!

So now you can work out the best moat width - and save the castle!

Start with a sketch

Look for familiar shapes (triangles, rectangles, etc)

Use an equation that tells you about this kind of shape

Solve your problem!

A castle is built on flat ground with 15.00 m walls. How wide must the moat be to ensure that a 25.00 m ladder only just touches the top of the wall? Assume that the base of the ladder is placed at the edge of the moat.

A castle is built on flat ground with 15.00 m walls. How wide must the moat be to ensure that a 25.00 m ladder only just touches the top of the wall? Assume that the base of the ladder is placed at the edge of the moat.

(Want to know a, the width of the moat.
By Pythagoras, $c^{2}=a^{2}+b^{2}$
Rearrange $\longrightarrow a^{2}=c^{2}-b^{2}$
equation
for the side
$a^{2}=25^{2}-15^{2}$
you want.
$a^{2}=400$
$a=\sqrt{400}=20.0 \mathrm{~m}$
So the best moat width is 20.0 m (3 sd).

Values in your question were given to 3 sd, so your answer should have 3 sd too.

there are no Dumb Questions

Q:. There were square roots in that solution, but it's been a while since I used these, and they're a bit hazy. Remind me how they work again?
A:
As we saw in chapter 3 , the square of a number is the number times itself.

$$
\text { or } 3^{2}=3 \times 3=9
$$

If you take the square root $(\sqrt{ })$ of a number, the answer you get is the number you'd have to square to get the one you started off with. For example, $\sqrt{ } 9=3$ because $3^{2}=9$.

Q:- I noticed that I got nice round numbers 15.0, 20.0 and 25.0 - for the side lengths. Does that always happen with right-angled triangles?

A:
: Here, the wall, ladder and moat formed a right-angled triangle which has nice side lengths in a 3:4:5 ratio. $3^{2}+4^{2}=5^{2}$, and a 15:20:25 ratio is just a 3:4:5 ratio multiplied by 5 .

But usually that doesn't happen - your calculator will give you answers that you'll have to round to the same number of significant digits as the values you were initially given to work with.

You kept them out!

Under your instructions, the castle workmen start digging your 20.0 m wide moat immediately.

A couple of hours after they've finished, some attackers come along with the new 25.0 m ladder ... and have an unexpected bath!

But the attackers get smarter!

Phoning for a pizza just isn't an option. How could you try to scare them away so you can get more supplies in?

BULLET POINTS

- The routine

SKETCH
 SHAPE
 EQUATION

is an excellent one!

- You'll often see right-angled triangles, as the ground is horizontal and walls, gravity and such operate vertically.
- The hypotenuse is the side opposite the right angle.
- Pythagoras' Theorem is an equation you can use to get the third side of a right-angled triangle if you already know the other two.
- Pythagoras' Theorem only works on right-angled triangles!
- If you spot a triangle with side lengths in a 3:4:5 ratio, then you know it must be right-angled (because Pythagoras' Theorem only works on right-angled triangles).
- If you forget which way around Pythagoras is, then think about the lengths of the sides and what makes sense. Or sketch out a 3:4:5 triangle and work out what Pythagoras must be from that.

Camelot ... we have ANOTHER problem!

You dealt with the new ladders-and gave the attackers an early bath by widening the moat.

But now they're camped at the edge of the moat, waiting for you to run out of food and surrender. It would be someone else's problem ... if you weren't stuck in the castle too!

On the bright side - you have a cannon!
On the not-so-bright side, you need to aim before you fire. And you can't look over the top of the wall to aim the cannon, as they'll probably shoot at you before you can aim at them...

Joe: But there is! The angles in a triangle add up to 180° !

The three angles in a triangle add up to $\mathbf{1 8 0}^{\circ}$.

Frank: Not a lot of progress though. The other two angles could be 1° and 89°, or 45° and 45°, or 18.2° and 71.8°.

Jim: Oh yeah. You can't find out two things you don't know if you only have one equation to work with.
Joe: Well, since we only have one equation at the moment, maybe we can do an experiment with some different right-angled triangles and see if we can figure something out?
Frank: OK, that kinda thing's worked for us before ...

The angle you want might be the SAME SIZE as one of the angles in your triangle.

When there are right-angled triangles around, you'll often find complementary and/or supplementary angles.
Complementary angles add up to 90°, and supplementary angles add up to 180°. They're useful because they help you work out the sizes of angles that aren't in your triangle.

> Try to spot angles that add up to 90° or 180° in and around your right-angled triangles.

Right angle

Relate your angle to an angle inside the triangle

We're going to give the firing angle the symbol θ. This is the Greek letter theta and is often used in physics to represent an angle that you're interested in.
You want to calculate the firing angle - but it isn't part of your triangle. However, when there are right-angled triangles around, there are often angles that add up to 90° or 180° that you can use to work out the angle you're interested in. Here, the firing angle and the angle at the top of your triangle add up to 90°.

Frank: Yeah, but what now?! We need to work out an angle - but we only know the side lengths of the triangle.

Joe: Well, if there isn't some kind of Pythagoras for angles, maybe we could go back to the idea of doing an accurate scale drawing, then measuring the angle with a protractor.

Jim: I guess that might work. The angles always have to add up to 180° however big the triangle is, so I guess that the angles wouldn't change even if all three sides got scaled up or down as we zoom in or out making scale drawings.

Frank: Yeah that's right. It's still the same triangle!
Jim: It says here that triangles with equal angles (but different

> Triangles with equal angles are called similar triangles. side lengths) are called similar triangles.

Joe: So the scale drawing would be of a similar triangle. And the angles would be the same as the original, big triangle. Cool!

Frank: But what if the attackers move? We'd have to do another scale drawing, and that's gonna take time.

Jim: We can do that in advance. We can draw all the right-angled triangles that you could ever get and measure their angles.

Joe: Yeah, we can make the information into a table so that you can look up the angles of any right-angled triangle without having to measure them. And we could get a computer or a calculator to look up the angles when we tell it the sides - that bit would be really quick.

Frank: But if we were drawing all possible right-angled triangles, some of them would be really huge, like, miles long!

Jim: Not necessarily. We just worked out that the angles of similar triangles are always the same. So if we have a triangle in the table with side lengths $3 \mathrm{~cm}, 4 \mathrm{~cm}$, and 5 cm , we don't also need one with 3 miles, 4 miles, 5 miles or 1500 miles, 2000 miles, 2500 miles, etc, as they're all just the same triangle, except zoomed in or out a bit.
Joe: Cool! Let's get cracking!

Using similar triangles in your table is the best bet, so each type of triangle only needs to appear in the table once. For example, instead of the table including lots of different triangles with side lengths in a ratio of $3: 4: 5$, it only needs to include one. But the problem now is how to arrange or index the table. How are you actually going to find the triangle when you go to look it up?

The problem is that the triangle someone wants to look up could be any SIZE or zoomed in or out from the SHAPE of its entry in the table. So how on earth can you ever find the row with the right SHAPE in it?

Triangle shape	Angle 日 (${ }^{\circ}$)	Other angle (${ }^{\circ}$)
	24.6	65.4

The angles in this table have 3 significant digits because that's easier to write - but the angles in the completed table could have more significant digits.

You need some way to classify the SHAPE of a triangle that doesn't involve its angles (which are what you want to look up).

If you look up the shape of your triangle, the table will give you its angles.

How might you classify the shapes of the triangles in your table?

Classify similar triangles by the ratios of their side lengths

If you take a triangle and magnify or reduce it (zoom in or out), you make a similar triangle which has the same angles as the triangle you started off with. For example, a scale drawing of a bigger triangle is a similar triangle.
Similar triangles don't have the same side lengths, but they do have the same ratios of side lengths. To work those out, you have to decide on a way of naming the sides so that everyone knows what you're talking about:

The hypotenuse it labelled 'hypotenuse.'
The side opposite 'your' angle is labelled 'opposite.' And you label the third side 'adjacent.'

The ratio of two side lengths is simply one side length divided by the other side length. There are three sides and three ratios, which all have names:

Sine (pronounced "sign")
Cosine (pronounced co-sign)

Tangent

When you're writing these as part of an equation, sine is abbreviated to sin, cosine becomes cos and tangent becomes tan.

> Similar triangles have the same RATIOS of side lengths. Sine, cosine, and tangent are RATIOS.

If you were saying

Label the sides the same way every time.

The RATIO of two side
lengths is one side length divided by another side length.

$$
\boldsymbol{\operatorname { c o s }}(\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

Don't worry about remembering which name is which ratio at the moment.

$\boldsymbol{\operatorname { t a n }}(\theta)=\frac{\text { opposite }}{\text { adjacent }}$

Sine, cosine and tangent connect the sides and angles of a right-angled triangle

The ratios sine, cosine and tangent are a way of classifying the similar triangles in your table. Suppose you have two similar triangles, one with side lengths $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm , and the other with side lengths $15.0 \mathrm{~m}, 20.0 \mathrm{~m}$ and 25.0 m . As they're similar triangles, you know that their angles must be equal.

And although their sides aren't equal, the ratios of their sides are. In the first triangle, the ratio of the two shortest sides is $\tan (\theta)=\frac{3}{4}=0.75$; in the second triangle, $\tan (\theta)=\frac{15}{20}=0.75$.

These are similar triangles with the same sizes of angles.

Label the sides of these right-angled triangles with ' h ' (hypotenuse), ' o ' (opposite), and ' a ' (adjacent), then fill the blanks in the table below. If a side length is missing, then use Pythagoras

Label the sides of these right-angled triangles with ' h ' (hypotenuse), ' o ' (opposite), and ' a ' (adjacent), then fill the blanks in the table below. If a side length is missing, then use Pythagoras to work it out in the space under the table. The angle θ is the one you're interested in.

By Pythagoras, $h^{2}=0^{2}+a^{2}$

Triangle b: $\quad h^{2}=20^{2}+9^{2}$
Triangle d: $\quad a^{2}=h^{2}-0^{2}$

$$
\Rightarrow h=\sqrt{481}=21.9 \mathrm{~cm}(3 \mathrm{sd})
$$

Triangle c: $\quad o^{2}=h^{2}-a^{2}$
$0^{2}=2.72^{2}-2.60^{2}$

$$
\begin{aligned}
0^{2} & =2.72^{2}-2.60^{2} \\
\Rightarrow 0 & =\sqrt{0.6384}=0.80 \mathrm{~cm}(3 \mathrm{sd})
\end{aligned}
$$

The side length ratios - sine, cosine and tangent - are always the same for similar triangles.

When you've labelled your triangle ' h ', 'o' and 'a' (hypotenuse, opposite and adjacent) it's fine to use these letters instead of a, b and c in Pythagoras' Theorem.

$$
a^{2}=5 b^{2}-48^{2}
$$

$$
\Rightarrow a=\sqrt{832}=28.8 \mathrm{~m}(3 \mathrm{sd})
$$

The units are important, as some triangles are in m and some are in cm .

How to remember which ratio is which??

SOH

$$
\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}
$$

TOA

The mnemonic 'SOH CAH TOA' helps you to remember which ratio involves which sides.

SOH - Sine is \mathbf{O} pposite divided by $\mathbf{H y p o t e n u s e}$.
CAH - Cosine is \mathbf{A} djacent divided by $\mathbf{H y p o t e n u s e . ~}$
TOA - Tangent is Opposite divided by $\mathbf{A} d j a c e n t$.

Say it a few times before you turn the page to help you remember.
"SOH CAH TOA" "SOH САН TOA" "SOH CAH TOA" "SOH СAH TOA" "SOH САН TOA"

If you forget which sides go with which ratio, write down this mnemonic, and go on from there.

Interviewer: So, sine, would you say that your bad reputation is justified?
sine: Sigh. The problem is that I'm sometimes get called 'sin.' But I'm still pronounced sine - with an 'e' - like 'pine.' I'm not bad-I'm a trigonometric function!
Interviewer: Err ... a trigono-what-now?!
sine: Trigonometric - that means I help you with triangles. And I'm a function, so you give me a number, and I give you a different number back.

Interviewer: Hmmm. No, sorry, you've lost me. Why would I ever want to swap numbers with you?
sine: Well, the number you give me is an angle, from a right-angled triangle. I give you back the ratio of the side opposite the angle divided by the hypotenuse.
Interviewer: Riiiiight. I'm not sure why I'd ever care about that, but there you go.
sine: I'm the missing link! I'm what connects what you can know about the lengths of a triangle's sides to what you can know about the sizes of its angles.

Interviewer: Hmm. So what?
sine: Right angled triangles and angles are very important in physics. In fact, I'm one of the most important things in your entire physics toolbox!

Interviewer: So, without you, people wouldn't be able to do most of the stuff in the rest of this book.
sine: Exactly!
Interviewer: You sound extremely important then. Can you just run past us again how you work?
sine: You give me an angle-probably one you found in a right-angled triangle. And I give you a number back, which is the ratio of the side opposite the angle divided by the hypotenuse. Like this:

Interviewer: But I don't really see how that helps.
sine: Well, if you already know the angle and the side opposite it, you can rearrange that equation to get the hypotenuse. And if you already know the angle and the hypotenuse, you can get the opposite side.

Interviewer: But what if I know the length of the adjacent side, plus one other side? Should I get Pythagoras to work out the missing side before calling on you to help?
sine: Not necessarily-you could call on my close relatives cosine or tangent.

Interviewer: And what do they do?
sine: Well, cosine is the ratio of the side adjacent to the angle divided by the hypotenuse. And tangent is the opposite divided by the adjacent.

Interviewer: Oh, so you guys cover all possible combinations of two sides of the triangle between you. So if I already know an angle and a side, I can get the length of any other side in one step. Cool. But what if I don't know any angles at all? Can I use you to work out the angles in a triangle too?
sine: Going the other way - from side lengths to angles?
Interviewer: That's right - some guys in a castle were trying to do that just before we went on air.
sine: You'll want my inverse to go the other way. He looks up the table of angles and ratios in the opposite direction. So you give my inverse a ratio, and he gives you the angle that the ratio corresponds to.
Interviewer: That sure sounds useful. Thank you, sine, you've been just swell.

Dumb Questions

QWhy choose to have three different ratios? Why not one, or two ... or five or six?
A: suppose you only know two sides of your right-angled triangle, and want to find out one of the angles. If there were only one or two ratios in your calculator's table, you'd often have to work out the third side using Pythagoras before you could work out a ratio to get the angle. Having three ratios in the table covers all the different combinations of two sides.

Q:And why not five or six? You could have hypotenuse divided by adjacent, for example.
A : There are special names for these other ratios, but they're not important right now. You'll never need to use them on your physics course.

The trigonometric

 functions sine, cosine and tangent connect what you know about the sides of a right-angled triangle to what you know about its angles.If you put a value into a function, then it gives you a different value back. For example, if you give an angle to the sine function, it gives you back the ratio of the opposite and hypotenuse.

Q:OK. Now, I was wondering something else about 'tan' - or tangent, to give it its full name. I did tangents before, right? But that was something to do with working out the gradient of a curve, wasn't it?
A: : Good point. Very good point! A tangent is a straight line that only touches a curve at one point - and you did use one to work out the slope of a line in chapter 7 :

Your formula for $\tan (\theta)$ is basically a rewrite of the "slope of a line" equation, which is where the name 'tangent' comes from.

Q: suppose I work out a ratio (sine, cosine or tangent) from two of the sides of my triangle. How do I use that to get an angle?
A: : You need to calculate the firing angle for the cannon using the ratio of two sides of the moat-wall triangle. We're just getting on to that ...

Calculators have $\sin (\theta), \cos (\theta)$ and $\tan (\theta)$ tables built in

Your calculator already contains a table a bit like the one you've been filling in, where the angles of similar triangles are indexed using the ratios sine, cosine and tangent.
To get a ratio when you have an angle, use the $\sin (\theta), \cos (\theta)$ and $\tan (\theta)$ functions. They're usually printed on a calculator button.
To get an angle when you have a ratio, you need to use the inverse sine, cosine and tangent functions. They're usually written above the 'sin' 'cos' and 'tan' buttons. You use the inverse functions by pressing the 'shift' or '2nd fn' button first.
The inverse functions are usually called $\sin ^{-1}, \cos ^{-1}$ and $\tan ^{-1}$. This is weird, as at first glance the ${ }^{\text {c-1 }}$, bit looks like scientific notation. But it's not - it's just a convention for indicating an inverse function that you'll unfortunately need to get used to.

Sometimes the inverse functions are called arcsine, arccosine and arctangent. These are abbreviated to asin, acos and atan on calculators. Make sure you know what they're called on your calculator!

Here's the table you already started filling in on pages 351-352. It's similar to the kind of table in your calculator, and it's time to practice moving smoothly between sides and angles before you do the critical mission of calculating the angle back at the castle.
The side lengths you were originally given are written in type. Your job is to skip the Pythagoras step and use the appropriate ratio - $\sin (\theta), \cos (\theta)$ or $\tan (\theta)-$ to get from the two given sides to find the angle θ. Show which ratio you'd use by circling it.
Once you've worked out θ, try to spot a quick way of calculating β for each triangle as well.

				We've used another Greek letter, β (beta), to represent the other angle \downarrow		
	Triangle	$\boldsymbol{\operatorname { s i n }}(\theta)$	$\cos (\theta)$	$\boldsymbol{\operatorname { t a n }}(\boldsymbol{\theta})$	Angle $\theta\left({ }^{\circ}\right.$)	Angle β (${ }^{\circ}$)
a		0.515	0.858	0.6	31.0	
b	$\underbrace{20 \mathrm{~cm}}_{B} 9 \mathrm{~cm}$	0.411	0.913	0.45		
c	$\begin{array}{cc} \hline & 2.60 \mathrm{~cm} \\ \hline B & \theta \\ \hline & 2.72 \mathrm{~cm} \end{array}$	0.294	0.956	0.308		
d		0.857	0.514	1.67		

Triangle a - could use any two of three given sides.
Use tangent with opp and adj.

$$
\theta=\tan ^{-1}(0.6)=31.0^{\circ}(3 \mathrm{sd})
$$

If you're not sure what to do with your calculator, play with the one we've already done, and see which buttons
you need to press to get the same answer.

Here's the table you already started filling in on pages 351-352.
Solution
The side lengths you were originally given are written in type. Your job is to skip the Pythagoras step and use the ratio (sin, cos or tan) you can get from the two given sides to find the angle a. Show which ratio you'd use by circling it.
Once you've worked out θ, try to spot a quick way of getting β for each triangle as well.

	Triangle	$\sin (\theta)$	$\cos (\theta)$	$\boldsymbol{\operatorname { t a n }}(\boldsymbol{\theta})$	Angle $\theta\left({ }^{\circ}\right.$)	Angle β (${ }^{\circ}$)
a		0.515	0.858	0.6	31.0	59.0
b	$\underbrace{20 \mathrm{~cm}}_{\beta} 9 \mathrm{~cm}$	0.411	0.913	0.45	24.2	65.8
C		0.294	0.956	0.308	17.1	72.9
d		0.857	0.514	1.67	59.0	31.0

Triangle a: could use any two of three given sides.
Use tangent with opp and adj.
$\begin{array}{llll} & \theta=\tan ^{-1}(0.6)=31.0^{\circ}(3 \mathrm{sd}) & \text { Triangle } \mathrm{c}: & \theta=\cos ^{-1}(0.956)=17.1^{\circ}(3 \mathrm{sd}) \\ \text { Triangle b: } \quad \theta=\tan ^{-1}(0.45)=65.8^{\circ}(3 \mathrm{sd}) & \text { Triangle d: } & \theta=\sin ^{-1}(0.857)=59.0^{\circ}(3 \mathrm{sd})\end{array}$

Slow way of getting β : find sine, cosine or tangent of β.
there are no

Dumb Questions

Q:

- I was playing with my calculator and typed in $\sin ^{-1}$ (random number), and it gave me an error instead of an angle. Why was that?

A: It's great that you took the time to play with your calculator. Since the hypotenuse is the longest side, the length of any other side divided by the length of the hypotenuse must always be less than 1 . So if you type in $\sin ^{-1}$ of a random number bigger than 1 , it's not in the table, and the calculator gives you an error.

Back at the castle, everyone's depending on you!

Using the protractor, you can aim the cannon

Back at the castle, things are starting to get slightly desperate. The supply of food has just run out, and morale is low.

We're running out of time, and we'll need to work out how to aim the cannon and make the attackers retreat.

The trigonometric functions sine, cosine and tangent let you work out angles from side lengths, and vice-versa.

This is how it might be
Sharpen your pencil

A cannon sits on top of a 15.0 m castle wall. Outside the castle, at the edge of its 20.0 mmoat , are some attackers. What angle should the cannon make with the horizontal if it is to be pointed directly at the attackers?

Sharpen your pencil
 Solution

A cannon sits on top of a 15.0 m castle wall. Outside the castle, at the edge of its 20.0 m moat, are some attackers. What angle should the cannon make with the horizontal if it is to be pointed directly at the attackers?

The firing angle is the same as the angle θ in the triangle.
$\tan (\theta)=\frac{0}{a}=\frac{15.0}{20.0}=0.75$
Then use $\tan ^{-1}$ button to look up table in calculator:

$$
\theta=\tan ^{-1}(0.75)=36.9^{\circ}(3 \mathrm{sd})
$$

The cannon points at the attackers if it's aimed at 36.9° below horizontal.

Remember to give some
MEANING to your answer

- it's more than a number.

You can know everything! *

When you have a right-angled triangle and know the length of one side, plus one other fact (either another side length or an angle), you now have superpowers that enable you to work out all the other sides and angles.
You're going to see a lot of right-angled triangles through the rest of the book since the ground is horizontal and gravity accelerates things vertically at right-angles to the ground.

[^3]> If you know ONE SIDE, plus ONE OTHER FACT (a side or an angle, you can work out EVERYTHING about a right-angled triangle using sine, cosine, tangent and $\mathrm{P}_{\text {ythagoras. }}$

Does your answer SUCK?

Remember to check your answer once you've got it! Does the angle feel like it's the right kind of size? Did you remember the units? How about the calculations? And what about the 'kontext' stepping back and thinking about the big picture before moving on.

Well done if you already did this automatically when you worked it out!

Sharpen your pencil

Fill in the sections to see if your answer to the cannon question SUCKs. Remember to think about the 'k'ontext of what you're actually being asked to do!

S

SIZE
\qquad
\qquad UNITS

c

CALCULATIONS

\qquad
\qquad
"K'ONTEXT
\qquad
\qquad

Sharren your pencil Solution

 This is an EXTREMELY useful way of checking if your angle is plausible.Fill in the sections to see if your answer to the cannon question SUCKs. Remember to think about the 'k'ontext of what you're actually being asked to do!

s

 SIZE I'm expecting an angle less than 45° as it's opposite the smallest side of the triangle So 36.9° is very plausible, as the smallest side isn't that much smaller than the other two, and my angle isn't that much less than 45°.
U

UNITS l've put them in - it's an angle, measured in degrees:

CALCULATIONS Well, they look OK I rearranged the equation and used the inverse sine button OK (I didn't press the normal sine one by mistake)
"K'ONTEXT It's a cannon firing a cannonball from the top of a wall, so it goes along a straight line that's the hypotenuse of a right-angled tri ... hang on. OH NO - WE FORGOT ABOUT GRAVITY!!

Before you launch in, think:
 "Am I actually answering the question I was asked?"
 It saves time to do this
 BEFORE starting on the math rather than afterwards.

Uh oh. Gravity...

Everyone forgot about gravity! The calculations assumed that the cannonball's going to follow the same straight path as the ladder. So although you got an answer which was the correct size with correct units and flawless calculations, it wasn't the answer to the problem we have to solve!
Gravity makes objects like baseballs and footballs travel along curves as they fly through the air. So the cannonball's going to curve too because gravity will accelerate it downwards.

Solving the wrong problem is a common mistake.

This happens more often than you'd think! Because the triangle thing worked for the ladder problem, the guys kept plowing ahead, without backing up first to make sure what they were doing was an appropriate way of solving the new problem.

Any time you get asked something new, sit back and work out what you're supposed to do before thinking about how you'll do it. First what, then how. Then you'll be fine.

So what affects how much the cannonball curves? A baseball and a bullet appear to curve by different amounts. So maybe the firing angle will be OK after all if the cannonball doesn't deviate from its part all that much. To work out if the angle's OK, it's time to be the cannonball!

BE the cannonball SOLUTION

Your job is to imagine you're the cannonball. What makes you change direction as you go through the air? And what affects how much you deviate from a straight line?

But is there a way of nearly going along a straight line?!

P'm being accelerated downwards by gravity.

 If I was going slowly, l'd land very close to the wall.If I was going quickly, I'd land further out. If | was going really quickly, l'd almost go along a straight line.
My velocity affects how much I deviate from a straight line.

So we still don't know where to point the cannon.

Jim: We might still be OK though. I just looked up the cannon on the Sieges-R-Us website, and its muzzle velocity is $90 \mathrm{~m} / \mathrm{s}$! That's high compared with the distance it's traveling, so maybe there won't be time for it
 to deviate from its original path too much.
Joe: We could use our equations of motion... except that we don't know the cannonball's total displacement! We know that the straight line distance from the cannon to the enemy is 25.0 m . But how do we get the length of its curved path?
Jim: Maybe that doesn't matter though. Back in the desert, we didn't need to know everything about the cage to be able to use equations of motion to work things out.
Joe: So ... what do we know? The cannonball's initial velocity $\left(\boldsymbol{v}_{0}\right)$, its initial displacement $\left(\boldsymbol{x}_{0}\right)$ and the acceleration due to gravity (\boldsymbol{a}).
Frank: Except - how are we going to put the numbers into the equations? Before, the acceleration and velocity vectors were always along the same straight line, either in the same direction or in opposite directions. So we defined one direction as positive and the other as negative. But with the cannon, the acceleration vector points down, and the velocity vector points at an angle. They're not opposites! How do we deal with that?
Joe: Ah ... I see what you mean. And it's even worse - the direction the cannonball's going in keeps changing. So both the size and the direction of the velocity vector are changing all the time!
Jim: Mm-hm. How on earth are we gonna deal with that?
Joe: We could always go back to the experiment idea since we're doing something totally new now ...

The cannonball's velocity and acceleration vectors point in different directions

There's a big difference between the cannonball and an object launched vertically. The cannonball's velocity and acceleration vectors point in different directions. Not opposite directions - they're at completely different angles.

This creates a problem with the math. Before, we defined 'up' as the positive direction, and 'down' as the negative direction. This was because a launched object's velocity vector points up, and its acceleration vector points down. But the cannonball's velocity doesn't point up or down -it's at an angle - so you can't do that.

And even worse - as the cannonball accelerates, it changes direction and curves towards the ground. As time goes on, the direction of the velocity vector changes to point more and more towards the ground. That sounds difficult to deal with.

What IS possible is to try things out. You can see if there's any difference between how gravity acts on an object that is dropped versus an object that is already moving horizontally (like the cannonball is) before it falls.

$$
\begin{aligned}
& \text { Velocity vector } \\
& \text { at the end }
\end{aligned}
$$

Try it!

Try dropping two balls off the edge of a table at the same time, one with a little push and one with a big push. Keep the pushes horizontal for now so you're not 'helping' either of them downwards by pushing them towards the ground.

Look out for where they land - and when they land - and write down anything you notice.

\qquad
\qquad
\qquad
\qquad

Gravity accelerates everything downwards at $9.8 \mathrm{~m} / \mathrm{s}^{2}$

Back when you were thinking about the Dingo dropping/launching his cage, you worked out that gravity always accelerated the cage vertically at $9.8 \mathrm{~m} / \mathrm{s}^{2}$, whether the cage was going up or coming back down again.

This is also the case if an object's velocity has a horizontal part (or component). Gravity accelerates everything downwards at the same rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Tried it!

You've just been pushing two things off a table at the same time, but with different horizontal velocities, and seeing which hit the ground first.

The horizontal component of the velocity can't change once you've let go

Gravity accelerates things downwards at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$. When something moves through the air, gravity is the only thing affecting it (assuming that it doesn't have an The technical term for something moving through the air' is a PROJECTILE. engine like an airplane). The cannonball doesn't have an engine, so gravity changes the vertical component of its velocity at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Once you've launched the cannonball, nothing affects the horizontal component of its velocity. It will keep on doing exactly what it was doing.
there'll be air resistance, but for a cannonball, this will be tiny, and you can ignore it for now.

That's why the two objects you knocked off the table hit the ground at the same time, even though you gave one object a big horizontal push and let the other object drop straight down vertically.

The vertical components of both objects' velocities were zero at the start - they weren't falling before they left the table. Gravity accelerated both objects downwards at the same rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$, changing the horizontal components of each object's velocity by the same amount.

The horizontal component of both objects' velocities were unaffected by gravity. The dropped object landed directly under where it started, but the pushed object landed further away.

But the cannonball is launched at an angle - so its velocity initially has both horizontal and vertical components. What happens to something like that? Time to try it ...

> Gravity only affects the vertical component of the velocity.

λ - Try it!

Get a ball, and throw it straight up in the air while standing still.

Now start to walk along a straight line, still throwing the ball in the same way you were before. Walking forwards gives the ball a horizontal velocity component which is the same as your walking velocity. Throwing the ball upwards gives it a vertical velocity component.

Write and sketch anything you notice.

The horizontal component of a projectile's velocity is constant

A ball you throw straight up comes straight back down into your hand for you to catch.
A ball you throw straight up while moving forwards also comes back down into your hand. Even though your hand stays the same distance away from your body as you throw the ball (so you throw it straight up), the ball's velocity also has a horizontal component. This is because you're moving forwards at the time that you throw the ball.

A "horizontal component"
\leftarrow is sometimes called a
"horizontal component vector."

Would you, could you, on a plane?
OK, so imagine yourself on an airplane, traveling horizontally through the sky. If you throw a ball straight up in the air, it comes straight back down again.

These are just two different perspectives of the same ball being thrown. So the horizontal component of the balls' velocity MUST be the same as the horizontal component of the plane's velocity.

The horizontal component of the ball's velocity
is constant throughout the balls' motion.

Now, imagine that you're looking at the airplane from outside. You see the ball following a curved path. Relative to the inside of the plane, the ball goes straight up and down. But relative to a person outside, the ball moves horizontally with the same velocity as the plane.

0

The maximum height of the ball above your hand is still the same.

> The horizontal component of a projectile's velocity isn't affected by gravity, so is CONSTANT throughout the projectile's flight.

Yes. You can treat the vertical and horizontal parts of the problem separately.

Back in chapter 6, you solved an Emu-catching problem by treating the problem's horizontal and vertical parts separately. You were able to do this because the cage and the Emu are separate objects that are completely independent of each other.

You calculated the time it took the cage to fall using the cage's velocity and acceleration - which are both vertical.

Then you calculated the horizontal distance that the Emu would cover in that time.

As the horizontal and vertical components of the cannonball's velocity are completely independent, you can do the cannonball problem the same way you did the Emu problem.

You can calculate the time it takes for the cannonball to land by thinking about the vertical component of the cannonball's velocity and the cannonball's acceleration, which is also vertical.

Then you can calculate the horizontal displacement that the cannonball has in that time using the horizontal component of the cannonballs' velocity.

> The vertical component of a projectile's velocity behaves like an object launched straight up or down at that velocity.

The same method solves both problems

Step 1: Work out the vertical and horizontal components of the initial velocity, $\mathbf{v}_{0 \mathrm{v}}$ and $\mathbf{v}_{0 \mathrm{~h}}$.

Question Clinic: The "Projectile" Question

Any question that involves an object projected through the air usually means you have to turn its velocity into horizontal and vertical components. Then you can use your right-angled triangle superpowers together with your equations of motion (from chapters 6,7, and 8) to get your answers.

The question presented here is a typical question.

This is just our problem worded differently.

Remember to start with a sketch, and to add information to the sketch as you work things out, so you have it all in one place. things out, so you have it all in one place.

You need to work out the vertical and horizontal velocity components first, before you do parts b and c.
5. You are in a castle where the wall is 15.0 m high. A cannon at the top of the wall is aimed directly at an enemy 20.0 m from the base of the castle wall. The cannon's muzzle velocity is $90.0 \mathrm{~m} / \mathrm{s}$.
a. What angle does the cannon make with the ground?
b. How long does it take for the cannonball to reach the ground? c. How far from the attackers does the cannonball land?

This involves using the VERTICAL component of the cannonball's velocity to see how long it takes to fall vertically.

This involves using the HORIZONTAL component of the cannonball's velocity to see how far it travels horizontally in that time.

You've already done part a of the question with the displacement vector triangle.

The word 'angle' also gives you the hint that component vectors might be important.

Step 1: Work out the vertical and horizontal components of the initial velocity, $\mathbf{v}_{0 \mathrm{v}}$ and $\mathbf{v}_{0 \mathrm{~h}}$.

Step 2: Use the vertical velocity component and vertical displacement to work out the time the object is in the air for.

Step 3: Use the horizontal velocity component and the time to work out the object's horizontal displacement.

Sharpen your pencil

You are in a castle where the wall is 15.0 m high. A cannon at the top of the wall is aimed directly at an enemy $\mathbf{2 0 . 0} \mathbf{~ m}$ from the base of the castle wall. The cannon's muzzle velocity is $\mathbf{9 0 . 0} \mathbf{~ m} / \mathrm{s}$.

You've already worked out that the cannon makes an angle of 36.9° with the horizontal.
Now it's time to work out the vertical and horizontal components of the cannonball's velocity. Use subscripts in your symbols, \mathbf{v}_{v} for the vertical component and \mathbf{v}_{h} for the horizontal component.

This is a displacement vector triangle. You need to draw a velocity vector triangle and work out the lengths of its sides.

You are in a castle where the wall is 15.0 m high. A cannon at the top of the wall is aimed directly at an enemy $\mathbf{2 0 . 0} \mathbf{~ m}$ from the base of the castle wall. The cannon's muzzle velocity is $\mathbf{9 0 . 0} \mathbf{~ m} / \mathrm{s}$.

You've already worked out that the cannon makes an angle of 36.9° with the horizontal.
Now it's time to work out the vertical and horizontal components of the cannonball's velocity. Use subscripts in your symbols, \mathbf{v}_{v} for the vertical component and \mathbf{v}_{h} for the horizontal component.

There are TWO different ways of doing this question!

It doesn't matter Doing it using sine, cosine and tangent. This way would be the quickest if you hadn't already been playing which one you used with the displacement triangle earlier on.

- they both work!

Start by writing

$$
\begin{aligned}
& \sin \left(36.9^{\circ}\right)=\frac{\text { opp }}{\text { hyp }}=\frac{v}{90} \text { Then put the numbers } \\
& \text { in } / \text { rearrange it. } \\
& \Rightarrow v_{v}=90 \sin \left(36.9^{\circ}\right)=54.0 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

Horizontal component
Make sure you use headings, so you and others know

$$
\begin{aligned}
& \cos \left(36.9^{\circ}\right)=\frac{\text { adj }}{\text { hyp }}=\frac{v_{h}}{90} \\
& \Rightarrow v_{h}=90 \cos \left(36.9^{\circ}\right)=72.0 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

what you're trying to do.

Doing it using similar triangles

The position and velocity triangles are SIMILAR TRIANGLES.

Their angles are the same, as they both have

Velocity

Displacement

Sometimes there's more than one way of doing the same calculation.

There often isn't one single "right way" to solve a problem in physics. As long as you reach the correct destination, it doesn't really matter how you got there, as long as what you did makes sense.

Here, the usual way to work out the horizontal and vertical components would be to use sine and cosine, along with the angle and side you'd been given for the velocity triangle. That's the method given in the first answer.

But because you already knew all three sides of the displacement triangle (from doing the ladder thing), it was possible to take a shortcut this time. Shortcuts are a good idea - they involve doing fewer calculations. Fewer
 calculations mean you type less into your calculator - and there's a smaller chance that you'll mess up by accidentally typing the wrong thing.

These triangles are exactly the same shape, just scaled differently.

This particular shortcut works because the displacement and velocity triangles are similar triangles. You already know that the ratios of their side lengths will be the same. $\frac{15}{25}$ in the first triangle $=\frac{\mathbf{v}_{\mathbf{v}}}{90}$ in the second triangle. You don't need to use the angle and sine, cosine or tangent to calculate the ratios of the side lengths.
5. You are in a castle where the wall is 15.0 m high. A cannon at the top of the wall is aimed directly at an enemy 20.0 m from the base of the castle wall. The cannon's muzzle velocity is $90 \mathrm{~m} / \mathrm{s}$.
a. What angle does the cannon make with the ground?
b. How long does it take for the cannonball to reach the ground?
c. How far from the attackers does the cannonball land?

Sometimes you have to work out the intermediate steps yourself.

Many processes in life involve a series of intermediate steps to get from where you are to where you want to be. To get into your house, first of all you need to find your keys! Physics problems can be like this too.

In order to calculate the time it takes for the cannonball to fall, you need the vertical component of the cannonball's velocity. And to calculate the horizontal displacement, you need the horizontal component of the cannonball's velocity.

Spotting these intermediate steps comes with experience and practice with a variety of physics problems. You've been building up the ability to spot what you need to do to solve a problem as you've been learning to think like a physicist. But using what you've learned in this book to do practice problems and exam questions from elsewhere is important too.

Step 1: Work out the vertical and horizontal components of the initial velocity, $\mathbf{v}_{0 \mathrm{v}}$ and $\mathbf{v}_{0 \mathrm{~h}}$

Sharpen your pencil

b. How long does it take for the cannonball to reach the ground?

Hint: Treat the cannonball like something launched directly downwards with the vertical component of the cannonball's velocity. Do a sketch that only deals with the VERTICAL direction and go on from there.

Step 2: Use the vertical velocity component and vertical displacement to work out the time the object is in the air for.

Step 3: Use the horizontal velocity component and the time to work out the object's horizontal displacement.

Hint: You may need to use more than one equation of motion to solve this problem.

Sharpen your pencil
 Solution

b. How long does it take for the cannonball to reach the ground?

This is a sketch that only deals with the vertical direction. It's much clearer to do this than it is to try to work with parts of triangles.

\[

\]

$$
4
$$

Write down your three key
equations, and make a note of what you do and don't know.

$$
\begin{aligned}
& \begin{array}{l}
\text { Down is positive, as } \\
\text { nothing's pointing up. } \\
v_{0}=54 \mathrm{~m} / \mathrm{s} \\
\downarrow \\
a=9.8 \mathrm{~m} / \mathrm{s}^{2} \\
t=?
\end{array} \quad t=0 \mathrm{~s} \\
& x=15.0 \mathrm{~m}
\end{aligned}
$$

In the first equation, the only thing $/$ don' t know is t. But there's both t and t^{2} in the equation, and I cant rearrange it to say " $t=$ something."
So use third equation to work out v, then use that value in $v=v_{0}+$ at to work out t.

$$
\begin{aligned}
& v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
& v=\sqrt{54^{2}+(2 \times 9.8 \times 15)}=56.7 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

If you're only dealing with one component (in this case the vertical component) of the
Use this value in $v=v_{0}+$ at to work out t.

$$
\begin{aligned}
v & =v_{0}+a t \\
a t & =v-v_{0} \\
t & =\frac{v-v_{0}}{a}=\frac{56.7-54}{9.8}=0.276 \mathrm{~s}(3 \mathrm{sd})
\end{aligned}
$$

displacement, velocity and acceleration, you can omit the 'horizontal' and 'vertical' subscripts from your variables to reduce the clutter in your work.

It takes $0.276 \mathrm{~s}(3 \mathrm{sd})$ for the cannonball to reach the ground.

Step 1: Work out the vertical and horizontal components of the initial velocity, $\mathbf{v}_{0 \mathrm{v}}$ and $\mathbf{v}_{0 \mathrm{~h}}$.

Step 2: Use the vertical velocity component and vertical displacement to work out the time the object is in the air for.

Step 3: Use the horizontal velocity component and the time to work out the object's horizontal displacement.

Sharpen your pencil

Now for part c (or step 3 in the illustration above). Hang in there; you're nearly done!
c. How far from the attackers does the cannonball land? (The attackers are at the edge of the moat, 20.0 m from the base of the wall.)

Hint: Treat the cannonball like something launched horizontally with the horizontal component of the cannonball's velocity. Do a sketch that only deals with the HORIZONTAL direction and go on from there.

You'll need to use the velocity triangle you already worked out and the time from part b (it takes 0.276 s for the cannonball to reach the ground).

Sharpen your pencil Solution

c. How far from the attackers does the cannonball land?
(The attackers are at the edge of the moat, 20.0 m from the base of the wall.)

Horizontal distance traveled in this time $=$ speed \times time $\longleftarrow \begin{aligned} & \text { This is the right method }- \text { once you } \\ & \text { know how ling }\end{aligned}$
$=72 \times 0.276 \quad$ an g takes to reach the ground VERTICALLY, work
Attackers are 20.0 m away from the foot of the castle wall. This is another way of saying that they are 20.0 m 7 $=19.9 \mathrm{~m}(3 \mathrm{sd})$ horizontally from the cannon.

So the cannonball lands 20.0-19.9=0.1 m short of the attackers, but probably gets them running scared ...

Did you answer the question you were ACTUALLY ASKED (distance from the attackers) or did you leave it as 19.9 m (distance from the wall)?

Check: "Have I

actually answered the question I was asked?"

Make sure you don't forget to

 do something simple at the end, like convert units or subtract one length from another.
And so they ran away

The cannonball lands only 10 cm away from the attackers and soaks them! They didn't know you had a cannon up your sleeve (as well as your shovels). And and they're not waiting around to see what you do next - so make a very hasty retreat!

BULLET POINTS

- With a right-angled triangle where you know the length of one side plus one other fact (a side length or an angle), you can work out all the other sides and angles using sine, cosine, tangent and Pythagoras.
- Similar triangles have the same sizes of angles.
- Similar triangles are useful because the ratios of the similar sides are the same. This means you can often find side lengths without having to work out an angle.
- If something's velocity is in a different direction from its acceleration, try breaking the velocity down into vector components parallel to and perpendicular to the acceleration.
- Vectors should always be added nose to tail.
- Once your displacement/velocity/acceleration vectors are broken down into components at 90° to each other, you can treat the two directions independently.
- You might want to work out the time it takes something to happen from one component, then use that in an equation involving the other component.
- Add together the component vectors at the end to find out what's happened to the original vector.

If you're doing the AP Physies exam, youre not allowed a calculator in the multiple choice section. So they give you a table - like the one you worked out earlier - of values for sine, cosine and tangent for certain 'common angles.'

There are some standard triangles that you should look out for.

You've already met the 3:4:5 triangle in this chapter. Its angles (to 2 sd) are 37° and 53°. So if you see a question, especially on the multiple choice section (where you can't use a calculator) involving these side length ratios or angles, you know what kind of triangle it is.

Another standard triangle is the $1: 1: \sqrt{ } 2$ triangle.. It has two sides that are the same length, so the two angles opposite them are the same size -45°.

Hey ... I've noticed that the AP table of information has sine, cosine and tangent for 'common angles.' What makes an angle 'common'?!

Note that the smallest side is always opposite the smallest angle, and the largest side is opposite the largest angle.

The third standard triangle in the table is the $1: 2: \sqrt{ } 3$ triangle.

Question Clinic: The "Missing steps" Question

Often, you'll get a multi-part question, which doesn't directly ask you to carry out some of the steps you need to get from one bit of the question to the next. So there are missing steps that you need to figure out yourself. If you're familiar with the methods that are used in certain types of questions, you'll be fine with this.

The way the question is set up at the start, it could be a 'wheat from the chaff' one where these details are irrelevant and just in there to distract you.

So you start with a sketch and do the first bit with trigonometry (sine, cosine and tangent) which may make you think Pythagoras will be next.

This is the missing step and the KEY to being able to do the question.

Parts b and c need you to use equations of motion - and you MUST carry out the missing step to be able to do them correctly.

If you don't realize that this is REALLY important, you might wrongly try to do the question using Pythagoras and a straight flight path along the hypotenuse of a right-angled triangle, like we did
earlier.

Work out the horizontal and vertical components of the cannonball's velocity.
b. How long does it take for the cannonball to reach the ground?
c. How far from the attackers does the cannonball land?

Pythagoras
An equation that you can use to find the third side of a right-angled triangle when you already know two sides.

Using the ratios sine, cosine and tangent to relate ratios of side lengths to angles.

Component
'Part' of a vector. For example, you can turn a vector that's at an angle into horizontal and vertical conponent vectors.

Your Physics Toolbox

You've got Chapter 9 under your belt and added some terminology and answerchecking skills to your tool box.

Pythagoras' Theorem

If you know the lengths of two sides of your right-angled triangle, you can calculate the length of the third side.

$$
c^{2}=b^{2}+a^{2}
$$

Component vectors

 If an object is moving at an angle, it can be useful to break down its velocity vector into horizontal and vertical component vectors.The horizontal component remains constant.
The vertical component is affected by gravity. This lets you break down a complicated problem into two simpler problems that you already know how to do.

Right-angled triangle facts
If you know one side and one other fact (either a side or an angle), then you can work out EVERYTHING there is to know about a right-angled triangle using Pythagoras and sine, cosine and tangent.

Spot the triangle

Anytime you do a sketch that involves two dimensions, look out for triangles.
Keep a special look out for right-angled triangles formed when there are things going on both horizontally and vertically.

sine, cosine and tangent

sine, cosine and tangent are ratios of the sides of a right-angled triangle.

$$
\begin{aligned}
\sin (\theta) & =\frac{\text { opp }}{\text { hyp }} \\
\cos (\theta) & =\frac{\text { adj }}{\text { hyp }} \\
\tan (\theta) & =\frac{\text { opp }}{\text { add }}
\end{aligned}
$$

10 momentum conservation

What Newton Did *

 *

No one likes to be a pushover. So far, you've learned to deal with objects that are already moving. But what makes them go in the first place? You know that something will move if you push it - but how will it move? In this chapter, you'll overcome inertia as you get acquainted with some of Newton's Laws. You'll also learn about momentum, why it's conserved, and how you can use it to solve problems.

The pirates be havin' a spot o' bother with a ghost ship ...

The pirate captain is being chased across the seas by a ghost ship and needs to make sure it keeps its distance.
His ship's fitted with some Sieges-R-Us battle cannons. The captain wants to know the maximum range of his cannons - the maximum horizontal distance he can fire a cannonball, and you've been called in as the expert.
But the supply of cannonballs is limited at sea - so he won't actually be able to fire a cannon until you've got it all worked out.

Whiteboard Wipeout - Cannonball

Time to get the hang of what the cannonball's doing. Your job is to sketch graphs that show how the horizontal and vertical components of the displacement, velocity and acceleration change with time. Think about it one component at a time, and do the easier graphs first!

Maximum height

Horizontal velocity

Horizontal acceleration

Vertical displacement

Vertical velocity

Vertical acceleration

Whiteboard Wipeout - Cannonball SOLUTION

Time to get the hang of what the cannonball's doing. Your job is to sketch graphs that show how the horizontal and vertical components of the displacement, velocity and acceleration change with time. Think about it one component at a time, and do the easier graphs first!

Horizontal displacement

Horizontal displacement increases at a constant rate.

Horizontal velocity

Horizontal acceleration

Vertical displacement

Vertical velocity

What does the maximum range depend on?

Now that you've sketched the graphs of its component vectors, you can think which variables may affect the maximum range of the cannonball.

For example, you already know from the last chapter that the firing angle will make a difference to the range. But what angle will be the best? Can you figure it out by thinking about what will happen at the extremes of the range of angles you could fire the cannonball at? And is there anything else you might need to take into account?

Now think about some extreme angles to help you work out what's important.
b. Imagine - and draw - what will happen for small firing angles (close to 0° or horizontal) and describe this in terms of horizontal and vertical velocity components.

d. What do you think the optimal firing angle will be to give the maximum range? (You don't have to be right - just guess and trust your instincts).
a. Write down all the things that could possibly affect the range of the cannonball.

Firing angle	Velocity of ship
Velocity of cannonball	A big wave could change the angle / velocity

Wind speed and direction
Now think about some extreme angles to help you work out what's important.
b. Imagine - and draw - what will happen for small firing angles (close to 0° or horizontal) and describe this in terms of horizontal and vertical velocity components.

If the firing angle is small, then the horizontal component is large, and the vertical component is small. Although it's going fast horizontally, it isn't spending much time in the air because the vertical component is so low.
c. Imagine - and draw - what will happen for large firing angles (close to 90° or vertical) and describe this in terms of horizontal and vertical velocity components.

d. What do you think the optimal firing angle will be to give the maximum range? (You don't have to be right - just guess and trust your instincts.
The optimal firing angle will be between these two extremes - probably at around 45°.

Firing at 45° maximizes your range

Larger angle gives

An angle of 45° gives you the best balance between time in the air (vertical component of velocity) and distance covered horizontally in that time (horizontal component of velocity).

So you end up with the maximum range possible for that velocity.

You can't do everything that's theoretically possible - you need to be practical too

The pirate captain is delighted at your suggestion of achieving a maximum range using a 45° firing angle. Unfortunately, the pirates aren't able to aim properly for angles greater than 10°, so a 45° firing angle isn't practical. Sometimes what would be theoretically possible is restricted by what's physically possible.

But on the bright side, you know that if the pirates fire their cannon at 10°, the cannonball will go further than it would for any other possible angle, as 10° is the closest to 45° you can practically get. So you can calculate the range ...

Sharpen your pencil

Remember to start with a sketch, and say which direction is positive. You might want to use subscripts to represent the vertical and horizontal components, like v_{h} and v_{v}.

Work out the maximum range of the cannon when it's fired at an angle of 10° with an initial velocity of $90.0 \mathrm{~m} / \mathrm{s}$. (Assume that the cannonball is fired from sea level to sea level.)

Page 328 in chapter 8 and page 375 in chapter 9 should help you if you're not sure how to break this problem down into smaller parts.
Work out the maximum range of the cannon when it's fired at an angle of 10° with an initial velocity of $90.0 \mathrm{~m} / \mathrm{s}$. (Assume that the cannonball is fired from sea level to sea level.)
Start off by working out horizontal and vertical velocity components.

$$
v_{o n}
$$

$$
\begin{aligned}
\cos \left(10^{\circ}\right)=\frac{a d j}{h y p} & =\frac{v_{0 h}}{v_{0}} \\
\Rightarrow v_{o h} & =v_{0} \cos \left(10^{\circ}\right)
\end{aligned}=88.6 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \quad \text {) }
$$

Get time from vertical velocity component (working ONLY with vertical components):
Either use subscripts like this, or be very very careful when you treat the vertical and horizontal components separately!

$$
\Rightarrow t=\frac{v_{v}-v_{o v}}{a_{v}}=\frac{(-15.6)-(15.6)}{-9.8}=3.18 \mathrm{~s}(3 \mathrm{sd})
$$

Work out horizontal change in position during that time using horizontal velocity component

$$
\left.\begin{array}{ll}
\quad \begin{array}{l}
v_{h}=88.6 \mathrm{~m} / \mathrm{s}
\end{array} & \begin{array}{l}
t=3.18 \mathrm{~s} \\
\text { No acceleration in }
\end{array} \\
x_{o h}=0 \mathrm{~m} \\
x=?
\end{array} \right\rvert\, \Rightarrow x_{h}=\frac{\Delta x_{h}}{\Delta t}=\frac{x_{h}-x_{o h}}{t-0}=\frac{x_{h}}{t}
$$ horizontal direction.

$$
x_{h}=?
$$

The range of the cannonball fired at 10° is $282 \mathrm{~m}(3 \mathrm{sd})$

Spotting that the initial and final vertical velocity components are the same size (although in opposite directions) is pretty useful, right?

Look out for short uts involving symmetry.

Symmetry is often a useful shortcut - especially if the overall vertical displacement is zero.
Sometimes you can use the fact that a projectile takes equal times to go up and down as a shortcut.
And sometimes you can use the fact that the vertical components of $\mathbf{v}_{\mathbf{0}}$ and \mathbf{v} have the same size (but opposite directions) at the same height.

Q:Is it OK if I didn't spot the symmetry but still got most of the way through the problem?
A: : Yes, it's absolutely fine. But it's always a good idea to keep on the lookout for symmetry, because it sometimes lets you solve problems more quickly.

Q:Can you still get the right answer to a problem like this even if you don't spot the symmetry?
A: - Yes - you can use the equation $\mathbf{v}^{2}=\mathbf{v}_{0}{ }^{2}+2\left(\mathbf{x}-\mathbf{x}_{0}\right)$. Here, $\mathbf{x}-\mathbf{x}_{0}=0$ because the cannonball starts and finishes at the same height. So the equation simplifies to $\mathbf{v}^{2}=\mathbf{v}_{0}{ }^{2}$.

$Q:$If I have the equation $\mathbf{v}^{2}=\mathbf{v}_{0}{ }^{2}$, doesn't that mean that $\mathrm{v}=\mathrm{v}_{0}$?

A:: Not necessarily. If you multiply two negative numbers together, then you get a positive number. So the solution to the equation $\mathbf{v}^{2}=\mathbf{v}_{0}{ }^{2}$ could either be $\mathbf{v}=\mathrm{v}_{0}$ or $\mathbf{v}=-\mathrm{v}_{0}$.

Q:- If I have an equation with two possible solutions, how do I work out which solution is correct?

A:Look at the context (or 'k'ontext). Here, the vertical component of the cannonballs' velocity points up at the start and down at the end. So they're in opposite directions. Therefore, the solution must be the one where the vertical velocity components point in opposite directions: $\mathbf{v}=-\mathrm{v}_{0}$.

Q :I noticed that there were some subscripts used in the sharpen answer. Should I use subscripts too? A : subscripts sometimes help you keep track of things - and sometimes make things look messy! As long as you stay organized and write out what you're doing, you'll be OK.
Q: What if the ghost ship's more than 282 m away? I guess the pirates can't just get new cannons that have a higher muzzle velocity?
A : The pirates have to stick with the same cannons. But the website does say that the muzzle velocity is for a standard iron cannonball ...

Velocity vector at the end. The vertical components' are the same size but in opposite directions.

The horizontal component is the same (no horizontal acceleration).

Usually you'd draw the velocity vector pointing away from the cannonball, but we've put it here to make the symmetry more obvious.

> If a projectile starts and finishes at the same height, the vertical component of its velocity has the same size, but the opposite direction, at the start and finish.

Sieges-R-Us has a new stone cannonball, which they claim will increase the range!

The Sieges-R-Us website has just been updated! As well as the standard iron cannonball, they now have a stone cannonball. Although both cannonballs are the same size, the stone cannonball is only a third of the mass of the iron cannonball because they're made from different materials.

An object's mass is a measure of the amount of stuff it's made from. Both cannonballs are the same size and have the same volume (so fit in the same cannon), but the iron one has more material in it.

The website claims that the stone cannonball has a longer range than the iron one if you fire it out of the same cannon. But the stone cannonball is so new that there are no tech specs - like the muzzle velocity.

So... does the stone cannonball actually go further, or is it all hype?

คロッ

S.11 sieges-r-us Cannonballs Stone cannonball

Increase the range of your slandard cannon with a lower mass stone cannonball.
A quarter of the mass of the standard iron cannonball.
> 'Does it?' and 'How much?' are both questions you may need to answer.
> Sometimes you need to answer a qualitative question, such as "Does a stone cannonball go further than an iron cannonball (which has a larger mass) if you shoot them from the same cannon?"
> And sometimes you need to answer a quantitative question like, "How much further (if at all) does a stone cannonball go than an iron cannonball (which has a larger mass) if you shoot them both from the same cannon?"

> Here, it's likely you'll need to answer both questions. If the stone cannonball does go further, then the pirates will want to know how much further, so they can keep the ghost ship as far away as possible.

Jim: Yeah, they don't even have any tech specs on there about the velocity the stone cannonball will travel at - only the fact that it's a third of the mass of the iron cannonball.

Frank: But the two cannonballs must have the same size if they both fit in the same cannon - so how can they have different masses?

Joe: $1 \mathrm{~cm}^{3}$ of iron has a larger mass than $1 \mathrm{~cm}^{3}$ of stone, doesn't it? If you have the same volumes of iron and stone, it takes more effort to lift the iron. So if the two cannonballs are the same size, then the iron cannonball must have a larger mass. The website's right about that!

Jim: But didn't we say before that all falling objects accelerate at the same rate no matter what their masses are? So there wouldn't be any difference for the stone and iron cannonballs.

Joe: Him. But the cannonballs are coming out of the cannon
 before gravity takes over, aren't they? There'd be the same explosion to push them out of the cannon each time.

Frank: And I guess that's different from gravity - the explosion pushes the cannonball, but gravity doesn't have to make contact with the cannonball to accelerate it.

Jim: Maybe we could be the cannon. We could imagine pushing the stone and iron cannonballs to see what we think would happen.

Joe: But to us, both cannonballs are difficult to push. Maybe this is a good place to think in extremes - like pushing a large mass versus pushing a small mass ... pushing an elephant versus pushing a mouse ...
If. BE ... someone pushing something Your job is to imagine pushing an elephant, then pushing a mouse with the same strength of push. You might want to think about each animal being on a skateboard so that you can actually see the effect of pushing them. How do their velocities vary?

Massive things are more difficult to start off

If you stand an elephant and a mouse on a skateboard and give each the same size of push to make them move, then the mouse ends up traveling at a higher velocity than the elephant. Because the elephant has a larger mass, it's more difficult to change its velocity.

Massive things are more difficult to stop

The larger an object's mass,

 the more difficult it is to change its velocity.This is true if the object's initial velocity is zero. It's also true if the object is moving.

If the elephant and the mouse are already traveling with the same velocity, the elephant is more difficult to stop. This is because its greater mass means it has a greater tendency to continue at its current velocity when you give it the same strength of push.

Newton's First Law

Objects have inertia, which means that they will keep on moving with their current velocity unless you act on them with a force (for example, by giving them a push). A stationary object remains stationary unless something happens to make it move. And a moving object continues to move with its current velocity unless something happens to speed it up, slow it down, or change its direction of movement.
Another way of putting this is Newton's First Law, which says that an object will continue on with a constant velocity unless there's a net force acting on it.

'Net force' means total overall force.

there are no
 Dumb Questions

The same SPEED in
the same DIRECTION

Newton's First Law says that an object will carry on with the same velocity $<$ the same velocity $<$ force acting on it.

Q: If this is Newton's FIRST Law, does that mean there are others? How many are there?
A: You'll meet Newton's three Laws of Motion in this chapter and the next.

Q:- I've heard something about Galileo's Law of Inertia, which sounds very similar to Newton's First Law. Do I need to know about that as well?
A: Galileo's Law of Inertia and Newton's First Law both say the same thing, there's no need to worry.

Q:OK, so does it matter what I call these laws? Do I have to learn their names or is it enough to understand the physics concepts?

A :: Understanding the concepts is the most important thing, but in an exam, you may be asked to explain what's happening in terms of Newton's three laws. Then you'd have to remember which is which.

Q:If an object continues on with "constant velocity," it could either already be moving, or it could be completely still and have a velocity of zero, right?
A: : Yes, that's correct. Whether something's stationary or moving, you need a net force to change its velocity.

Q:If its velocity changes, that means it speeds up or slows down, right?
A : velocity is a vector, so as well as speeding up or slowing down, a change in velocity could be a change in direction without a change in speed. Q: What does 'net' force mean?

A:There might be more than one force acting on an object at the same time. The 'net' force is what you get when you add all the forces acting on an object together. Just like a company's net profit (or net loss) is when you add together all its incoming and (negative) outgoings.

We ell talk about this

Mass matters

If you push an elephant and a mouse with the same force each time, the mouse ends up with a larger velocity than the elephant because it has a smaller mass. And if you try to stop an elephant and a mouse that are already traveling with the same velocity, you'll get flattened by the elephant if you push it with the same force that you need to stop the mouse.
The more massive something is, the greater its inertia, or tendency to continue with its current velocity, and the larger the force you have to push it with to produce the same change in velocity.

there are no
Dumb Questions

Q: Does this mean I have to do math with forces? How do I do that?

A: That's something for later on. Right now, you're not doing calculations with forces, just working out some general physics principles involving them.

Q: I've heard the word 'inertia' used to mean reluctance. Like, "I had to overcome a lot of inertia to get out of bed on a cold morning." Is this another meaning for the same word?
A: It's kind of similar actually. An object's inertia is its tendency to continue at its current velocity. In the example you mention, your inertia is your tendency to continue in your current sleeping place. So the usage is kind-of similar!

The cannon exerts a force. The cannonballs have different masses.

The cannon pushes the cannonballs with the same explosion - the same strength of push, the same force. The iron and stone cannonballs have different masses, but both probably feel quite massive to you. It's hard to imagine what the difference will be.

So to work out what happens, you've been thinking about extremes - two things that have very different masses - so that you can come back to the cannonballs and say, "The stone one will have a higher velocity if they're both given the same push."
But before you go back to the pirate ship, here's a quick exercise.

> Get used to thinking in extremes to work out what will happen in your situation.

In this exercise, you have three coffee machine cups. One has an iron cannonball balanced on top, the next has a less massive stone cannonball on top, and the third has an even less massive wood ball balanced on top.
The same brick is dropped directly onto each ball from the same height each time. Which cup is damaged the least, and why?

Relax - we're looking for a prediction, so don't worry if

In this exercise, you have three coffee machine cups. One has an iron cannonball balanced on top, the next has a less massive stone cannonball on top, and the third has an even less massive wood ball balanced on top.
The same brick is dropped directly onto each ball from the same height each time. Which cup is damaged the least, and why?

Newton's first law says that objects continue at the velocity they already have unless acted on by a net force. All of the balls have zero velocity. The more massive something is, the more force you need to change its velocity. So it's most difficult to get the iron cannonball moving when you drop the brick on it, as it has the most mass. By being difficult to shift, it kind of protects the cup.
Therefore, the cup under the iron ball is damaged the least.

Massive things are more difficult to shift.

> The larger an object's mass, the more difficult it is to change the object's velocity.

If an elephant was sliding towards you, which would you rather it hit first - a solid wall or a sheet of paper? With this setup, the balls are actually protecting the cups from the impact of the brick like a wall would protect you from an elephant. The cup under the iron ball suffers the least damage because the iron ball has the largest mass.

If we dropped the balls themselves directly onto the cups, the iron ball would do the most damage since it takes more force to bring it to a standstill (the cup can't exert enough force to stop the ball ... but the ground can).

A stone cannonball has a smaller mass - so it has a larger velocity. But how much larger?

As the stone cannonball has a smaller mass than the iron one, it will come out of the cannon with a greater velocity.

However, the only thing you know about a stone cannonball is that it's a quarter of the mass of an iron cannonball. The pirate captain wants to know the range of a stone cannonball fired at 10°, but will only let you fire a stone cannonball horizontally.
Firing horizontally doesn't sound like it'll help, as you can't
measure the distance the cannonball goes out to sea, and the cannonball's velocity will be far too high to measure directly.

If you know the velocity, you can calculate the range.

increase the range of
your standard cannor w your standard cannor with
A quater of the mass of the standard roon cannonball.

BRAIN
PONER are actually on the ship?

You can't measure the distance when you're at sea!

Is there any way of working out the range or velocity for a stone cannonballs fired at 10° when you can only measure things that

Jim: Yeah, if the stone cannonball has a higher velocity, the vertical velocity component will be larger, so the cannonball will stay off the ground for longer. And the horizontal velocity component will also be larger, so the cannonball will go even further in that time.

Joe: So we've answered the "Does it?" question - it does go further. But now we need to answer the "How much?" question - how much further than the iron cannonball will the stone cannonball go?

Frank: But the stupid Sieges-R-Us website still hasn't been updated with proper tech specs. If we knew the muzzle velocity for the stone cannonball, it'd be easy. We might be able to do something if we knew the actual masses of the cannonballs. But all the website says is that the stone one is four times lighter than the iron one.

Joe: Maybe we could do some kind of experiment?
Frank: But the pirates won't let us fire their cannons at the ghost ship - they want the element of surprise...

Joe: I mean, maybe we could miniaturize things to do a small experiment then scale it up, like we've done before.
Jim: With a toy cannon, perhaps. We could make it fire two different objects, one four times the mass of the other.

Frank: I'm not sure how practical it is to calibrate a toy cannon. How about we use a spring to push an object horizontally? Then we're only thinking about one dimension - we can always extrapolate to two dimensions later on by using component vectors.
Joe: But if we push an object horizontally, they'll soon grind to a halt because of the friction between them and the table. There's relatively little friction when a cannonball goes through the air. It wouldn't be the same.

Jim: Hmm, air. Can we make some kind of hovercraft thingy to
A spring is a more
 0 push with the spring? That floats on a cushion of air.

Something like an air hockey table is a good way to reduce friction.

Frank: Or, no ... even better - can we use an air hockey table to reduce friction? We can push an object horizontally across an air hockey table, using a spring to make sure we use the same force each time.

Joe: I just thought of something else. Cannons recoil, right?
Jim: What do you mean?!
Joe: When you fire a cannon or a gun, the force of the explosion
0
 makes it kick back. That's why the pirates' cannon has wheels.

Frank: So how about putting the spring between two objects on the air hockey table. One has a large mass, like the cannon. The other has a smaller mass, like the cannonball. Then we get a recoil when we let the spring do its thing?
Joe: That sounds good, but I've also been thinking - how do we measure velocity? That's what we actually want to find out for the things with different masses - so we can scale it up for the two cannonballs and work out the range of the stone cannonball.
Jim: I guess we could mark out a distance we know, and time how long it takes for the thing we're pushing to cover it. We can work out a velocity from that.

Joe: But it's going to be difficult to do that precisely. It's not like we can use a regular stopwatch because the times here are going to be very short, maybe less than half a second and difficult to do by hand.

Frank: I've seen this thing in a physics lab before. It's a beam of 0 light, and when something goes through and breaks the beam, a timer starts. Then when the beam's restored, the timer stops.
Jim: But there's only one beam, right? So how can we time something over a certain distance when the beam's always in the same place?
Frank: If we know the length of the object going through the beam, then we know that it's gone exactly that distance while breaking the beam. So we can work out the velocity.
Joe: And we could do that for both the small object (cannonball) and large object (cannon) so we get the recoil velocity as well.
Jim: Let's go see what equipment we've got in the lab ...

Here's your lab equipment

Actual track is much longer than this.

Here are the things you need for this experiment:
You need a way of reducing friction. You have an air track, which is like an air hockey table because it has small holes in it all the way along its length to create a 'cushion' of air and reduce friction as much as possible.
You need objects to represent the cannon and cannonball.
The air track has specially-designed vehicles that sit on it.

An air track reduces friction, and the vehicles represent the cannon and cannonball.

You need a way of changing and measuring the vehicles masses. The air track vehicles come with a set of masses that you can stack on top of them - both these and the vehicle are marked with their masses. So one vehicle can represent the cannonball and the other one the cannon.

You need something to push the vehicles apart with the same force each time. You can use a spring, which you push in to the same place every time. Then when you let go of the spring, it pushes the vehicles apart.

You need a way of measuring velocity. You can measure pieces of card and attach them along the length of each vehicle.

Then set up a light gate (sometimes called a photogate) for each vehicle to pass through. When the card breaks the beam, it starts a timer, and when the card has passed all the way through, the beam is restored and the timer stops. This gives you the time it took for the vehicle to go the same distance as the length of the card, which you can use to calculate the velocity.

> Think about what you NEED to do. Then about what equipment you HAVE available to do it.

You can add a piece of card to a vehicle and time it with a light gate to work out its velocity.

How are force, mass and velocity related?

You now have all the equipment you need to design an experiment that will let you work out the effect that a cannonball's mass has on its muzzle velocity. But you need to put the equipment together in an experimental setup.

The other important thing at this stage is to work out what variables you can change during the course of your experiment. These are all the different things that might affect what you are measuring (in this case, the velocities of the vehicles).

> Any time you design an experiment, think about what your VARIABLES are.

Sharpen your pencil

a. Design and draw an experimental setup with the equipment on the opposite page (plus anything else you'd like to use) to replicate a scenario where a force pushes apart a cannon and a cannonball, so that they both experience a change in velocity. Your aim is to see how the velocity of the cannonball varies with its mass (and whether this also affects the recoil velocity of the cannon).
b. Identify the things in your experimental setup that you can vary in order to produce a set of results. (At this stage you're not being asked how you would vary them.)
c. Explain what measurements you would make for one trial of your experiment, and how you would use them to fill in a table of masses and velocities.

Sharpen your pencil
 Solution

a. Design and draw an experimental setup with the equipment on the opposite page (plus anything else you'd like to use) to replicate a scenario where a force pushes apart a cannon and a cannonball, so that they both experience a change in velocity. Your aim is to see how the velocity of the cannonball varies with its mass (and whether this also affects the recoil velocity of the cannon).
b. Identify the things in your experimental setup that you can vary in order to produce a set of results. (At this stage you're not being asked how you would vary them.)
C. Explain what measurements you would make for one trial of your experiment, and how you would use them to fill in a table of masses and velocities.

b. I can vary the mass of each vehicle, and the strength of the spring.
c. For one trial, I would put masses on each vehicle. Then I'd use scales to find the mass of the vehicle plus the masses. I would use the light gates to measure the time it takes for each vehicle to pass through. Then 1 would use the length of the card and the time to work out each vehicle's velocity
there are no
Dumb Questions

Q:
 Why am I using two vehicles again?

A :
: Cannons recoil. As well as the cannonball going forwards, the cannon goes backwards. So you're replicating that.

Why am I measuring the 'cannon' vehicle's velocity when I'm only interested in the cannonball's velocity?
$A:$
You never know what might be useful...

Q: But that's just extra work! A: The spring pushes both vehicles, so knowing both velocities might help you come to a better conclusion than only knowing one.

Frank: Yeah, but what do we do now?
Jim: I guess we push the vehicles apart, measure some times, use them to work out velocities and write them down in a table.

Frank: But we gotta be more organized than that. Like, what will we change in between one trial and the next?

Joe: We can change the mass of the "cannon" vehicle and the mass of the "cannonball" vehicle.

Jim: So we just change both masses each time. We won't have to do so many trials that way, as we can change two things at once.

Joe: I'm not sure that's a good idea. Suppose we change both masses and get a different result for the velocities. We won't know why we got a different result. Which of the two changes was responsible for the difference - or did it come about as a
 result of both changes working together somehow?
Frank: Yeah, that's a good point. In real life, the cannon's mass doesn't change. I think we should give one of the vehicles a really large mass - like the cannon has compared to the cannonball - then vary the mass of the other vehicle each time. we do a trial.

Jim: But what if we just happen to choose a mass for our 'cannon' vehicle that produces a special result. I think we need
to change that mass as well, to make sure anything we work out 'cannon' vehicle that produces a special result. I think we need
to change that mass as well, to make sure anything we work out isn't a special case.
Joe: So why don't we do one set of trials with a fixed 'cannon'
mass and change the 'cannonball mass' each time, then do another set with a different fixed 'cannon' mass to see if that makes a difference?

Frank: And then do another lot with a different spring, to make sure that's not a special case too.

Jim: OK, I see what you mean. Changing only one thing at a time must be the best way of doing it. If something different a time must be the best way of doing it. If something different
happens, you know for sure that the thing you changed is what caused the difference.

There are THREE variables in your experiment.

> You should only change one thing at a time in your experiment.

Vary only one thing at a time in your experiment

The point of doing an experiment is to find out what happens to one quantity if you vary another quantity. In this experiment, we want to find out what happens to the velocities of two objects that are pushed apart by a force when you vary the objects' masses. Then you can extrapolate your results to predict what will happen to the velocities of a cannon and cannonball when they're forced apart by an explosion.

If you vary both masses for each trial of your experiment, it'll be difficult to spot patterns in your results. You won't know which change had the most effect on your results - or if the changes somehow canceled each other out.

So by varying only one mass at a time then changing the other mass and doing it again will make sure that it'll be OK to extrapolate your findings to any two masses.

> An experiment shows you what happens to one quantity when you vary another quantity.

Sharpen your pencil

Here are the results of your experiment. We've annotated the diagram with all of the relevant details like labelling which light gate is which, and the length of the pieces of card $(10 \mathrm{~cm})$. Be careful with the direction that each velocity is in!

Fill in the missing boxes in the table, and use the space below to write down any patterns you see.
\qquad
\qquad
\qquad
\qquad

Be careful with the minus signs that show the direction
Times measured to 2 sd so you should only quote your velocities to 2 sd. of each vehicle's displacement and velocity vectors.

Repeat experiment with masses the other way round in case of systematic error/BIAS, e.g. the air track being on a slight slope.

Here are the results of your experiment. We've annotated the diagram with all of the relevant details like labelling which light gate is which. Note: The pieces of card on the vehicles are 10 cm long.

Fill in the missing boxes in the table, and use the space below to write down any patterns you see.

Mass $1(\mathrm{~kg})$	Mass $2(\mathrm{~kg})$	LG 1 time (s)	LG 2 time (s)	Velocity $1=\frac{\Delta x}{\Delta t}(\mathrm{~m} / \mathrm{s})$	Velocity $2=\frac{\Delta x}{\Delta t}(\mathrm{~m} / \mathrm{s})$
0.150	0.150	0.19	0.20	$\frac{-0.10}{0.19}=-0.53(2 \mathrm{sd})$	$\frac{0.10}{0.20}=0.50(2 \mathrm{sd})$
0.150	0.300	0.17	0.35	$\frac{-0.10}{0.17}=-0.59(2 \mathrm{sd})$	$\frac{0.10}{0.35}=0.29(2 \mathrm{sd})$
0.150	0.450	0.16	0.48	$\frac{-0.10}{0.16}=-0.63(2 \mathrm{sd})$	$\frac{0.10}{0.48}=0.21(2 \mathrm{sd})$
0.300	0.150	0.34	0.17	$\frac{-0.10}{0.34}=-0.29(2 \mathrm{sd})$	$\frac{0.10}{0.17}=0.59(2 \mathrm{sd})$
0.300	0.300	0.27	0.26	$\frac{-0.10}{0.27}=-0.37(2 \mathrm{sd})$	$\frac{0.10}{0.26}=0.38(2 \mathrm{sd})$
0.300	0.450	0.25	0.38	$\frac{-0.10}{0.25}=-0.40(2 \mathrm{sd})$	$\frac{0.10}{0.38}=0.26(2 \mathrm{sd})$
0.450	0.150	0.47	0.16	$\frac{-0.10}{0.47}=-0.21(2 \mathrm{sd})$	$\frac{0.10}{0.16}=0.63(2 \mathrm{sd})$
0.450	0.300	0.37	0.25	$\frac{-0.10}{0.37}=-0.27(2 \mathrm{sd})$	$\frac{0.10}{0.25}=0.40(2 \mathrm{sd})$
0.450	0.450	0.34	0.33	$\frac{-0.10}{0.34}=-0.29(2 \mathrm{sd})$	$\frac{0.10}{0.33}=0.30(2 \mathrm{sd})$

When the masses are the same, the velocities are roughly the same magnitude. i.e. is ano same size - magnit
When the masses are the same but both heavier than another trial, their velocities are smaller.
When the masses are different, the smaller one always has a higher magnitude of velocity
The size of mass x velocity is the same for both vehicles, whether the masses are the same or not
mass x velocity is always the same size for both vehicles in any one trial.

Don't worry if you didn't spot this last pattern. It's more difficult to see than the others.

Dumb Questions

QI looked really hard for the pattern but didn't spot it. Is that OK?

A:: If you spotted that when the mass of the vehicle is smaller its velocity is larger (as long as the other vehicle still has the same mass) then that's the main thing. Spotting that mass \times velocity always has the same value was the bonus.

Q:So if I hadn't kept one vehicle's mass constant, I might not have spotted the pattern for the other vehicle so clearly?

A:: That's right. Before you started actually doing your experiment, you worked out what things you are able to vary. Then you made sure that you varied only one thing at a time.

Keeping the mass of one of the vehicles constant enabled you to see the effect that varying the other vehicle's mass had. You were able to spot the pattern because you only changed one variable at a time.

Q:So I should turn all but one of the variables into constants for each trial - each set of measurements - that I make?

A:Precisely - just like you did in this experiment. Your first set of trials were for one mass of 'cannon' vehicle and your second set of trials for another.

> Change only one variable at a time and keep the others constant when you do an experiment. This helps you reach better conclusions.

Q:And that was so I didn't inadvertently draw conclusions from just one set of trials, when the results might have looked different for a different 'cannon' vehicle mass?
A: You got it!

Q: Why are we using a 'cannon' vehicle and measuring its velocity in the first place? Why not just push the 'cannonball' vehicle off of a solid wall or something?
A:
: Because of the observation that cannons recoil. When the cannonball goes forward, the cannon rolls backwards - that's why they have wheels!

Q: so we're trying to replicate the 'big' scenario the best we can with our experiment?

A:: Yeah, that's the idea.
Q: And now I get to use the results to come up with an equation that helps to work out the difference between firing the iron and stone cannonballs?
A : You got it!

Any time you're dealing with vectors, think about signs!

When you filled in your table of experimental results, you were talking about velocity, not speed. So each velocity should have a sign corresponding to the direction the vehicle is going in.

So far we've been saying that both vehicles have the same size of mass \times velocity. But you're right, the direction of the vectors is about to become really important ...

Mass x velocity - momentum - is conserved

From your experiment, you've worked out that when you push two objects apart, they end up with the same size of mass \times velocity. The name given to mass \times velocity is momentum. Momentum is given the symbol \mathbf{p}.

An object's momentum is a vector that points in the same direction as its velocity vector. Your experiment has told you that momentum is conserved in this interaction when two things are pushed apart, as the total momentum is the same both before and after.

Mass is measured in kg and velocity in m / s. This means that momentum has units of $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}$ The \cdot between ' kg ' and ' m ' means 'multiplied by' The \cdot helps to reduce confusion by keeping the ' kg ' and the ' m ' distinct

The total momentum is conserved in any interaction between different objects.

At the start of your experiment, the total momentum of the system is zero, as nothing's moving at all. Once the vehicles have been pushed apart, the total momentum of the system is still zero, as the two equally-sized momentum vectors point in opposite directions and cancel when you add them 'nose to tail'.

Momentum is always conserved in any interaction between two (or more) objects.

there are no
 Dumb Questions

Q:How can you say momentum is conserved? At the start, the vehicles don't have any momentum - they're sitting still. After they're pushed apart, they're moving, so they both have momentum.
A: : If you just think about each vehicle individually, then you're right - at the start they have no momentum and at the end they do.

But when you add up the total momentum of all the individual objects involved in the experiment, then it's the same both before and after the interaction

Q- But I thought we said before that mass \times velocity is the same for both vehicles once they're pushed apart. How can two things that are the same be zero when they're added together?
A: \therefore We said that the size of mass \times velocity is the same for both vehicles. But as they're traveling away from each other in opposite directions, their velocity vectors - and momentum vectors - point in opposite directions.

Momentum
is a vector!

Q: so when I add together two vectors that are the same size but point in opposite directions, the answer is zero? A: Yes, that's right. Vectors add 'nose-to tail'. When you line up two vectors that are the same size and point in opposite directions, you end up where you started so the answer is zero.

Q: so now l've got my head around momentum conservation, do I get to play with equations to try and solve the stone cannonball problem?
A:
: Absolutely!

Good point - you need to work out what happens when the force is different

When you were designing the experiment, you realized that there are three things you can vary - the mass of vehicle 1 , the mass of vehicle 2 and the strength of the spring that pushes them apart.

To make your experiment complete, you'd usually have to repeat it with a couple of different springs. But this time around, you're going to use your physics intuition to predict what would happen if you used a stronger spring ...

BE the experiment

Your job is to be the experiment you've just been doing, and imagine what will happen if you use an even stronger spring to push the two vehicles apart. How will the increased strength of spring affect mass X velocity for the vehicles?

BE the experiment - SOLUTTON

Your job is to be the experiment you've just been doing, and imagine what will happen if you use an even stronger spring to push the two vehicles apart. How will the increased strength of spring affect mass \mathbf{x} velocity for the vehicles?

A stronger spring will push the two vehicles apart with a bigger force So it'll have a bigger effect on the velocity of each vehicle. I think that momentum will still be conserved but the mass x velocity for each vehicle will be bigger, as they were

$\mathrm{p}_{\text {ushing with }}$ a greater force for the same amount of time, leads to a greater change
in momentum. pushed with a bigger force.

A greater force acting over the same amount of time gives a greater change in momentum

If you use a stronger spring, you increase the force that pushes the two vehicles apart. If you apply this larger force for the same time that you were applying the smaller force, it leads to a greater change of momentum for each vehicle. If both vehicles are still the same mass, their velocities will both be larger than before.

Small force, smaller change in momentum (when force is applied for the same time).

Write momentum conservation as an equation

The symbol for momentum is \mathbf{p}, so you can write the equation $\mathbf{p}=m \mathbf{v}$ (momentum $=$ mass \times velocity).

When you're dealing with more than one object, you'll typically see subscripts to make it clear which object you're talking about. So vehicle 1 has mass m_{1}, velocity \mathbf{v}_{1}, and momentum \mathbf{p}_{1}. Vehicle 2 has mass m_{2}, velocity \mathbf{v}_{2}, and momentum \mathbf{p}_{2}.

The total momentum is always $\mathbf{p}_{\text {total }}=\mathbf{p}_{1}+\mathbf{p}_{2}$ - this is what's conserved.

We've not drawn in the spring this time, to make what's going on with the vehicles a bit clearer.

At the start

$p_{\text {total }}=p_{1}+p_{2}$
$\mathbf{p}_{\text {total }}=\mathbf{0}$

At the start of your experiment, \mathbf{v}_{1} and \mathbf{v}_{2} are both 0 , therefore \mathbf{p}_{1} and \mathbf{p}_{2} are both zero so $\mathbf{p}_{\text {total }}=0$.

At the end

$\mathbf{p}_{\text {total }}=\mathbf{p}_{\mathbf{1}}+\mathbf{p}_{\mathbf{2}}$
$\mathbf{p}_{\text {total }}=\mathbf{0}$

At the end of your experiment, the massive vehicle is moving slowly to the left, and the less massive vehicle is moving more quickly to the right. $\mathbf{p}_{\text {total }}$ is still 0 , as momentum is conserved.

You can also write the equation this way, which will be very useful for working with masses and velocities:

$$
\begin{aligned}
& \mathbf{p}_{\text {total }}=\mathbf{m}_{\mathbf{1}} \mathbf{v}_{\mathbf{1}}+\mathbf{m}_{\mathbf{2}} \mathbf{v}_{\mathbf{2}}=\mathbf{0} \\
& p_{1}=m_{1} \uparrow \quad \tau_{p_{2}}=m_{m_{2}}
\end{aligned}
$$

$P_{\text {tots }}=0$, as the momentum vectors add to zero when you line them up nose to tail. \uparrow
This is zero because the total momentum was zero at the start. If the total momentum had a different value at the start, that value would be here instead.

There is a second law too-you'll meet that later. valent e

Imagine that instead of being separate, the spring is attached to the left hand vehicle, so the left hand vehicle 'pushes' the right hand vehicle. Then imagine that the spring is attached to the right hand vehicle, so that it 'pushes' the left-hand vehicle.
It actually doesn't make any difference which vehicle is "doing the pushing" - they still move apart in the same way. The size of each vehicle's change in momentum is the same, though their momentum vectors point in opposite directions. So both vehicles must have experienced the same size of force for the same amount of time, though in opposite directions. This is the case whichever vehicle you think of as "doing the pushing". Both vehicles experience the same size of force, but in opposite directions, as a result of their interaction.

In any interaction between two
objects, they both experience the same size of force, but in opposite directions.

Newton's Third Law says that if you push something, it pushes back at you with an equal size of force in the opposite direction.
 Momentum conservation and Newton's Third Law are equivalent

If the total momentum is conserved in any interaction, does that mean that when two things interact, they both experience the same size of force? v^{2}

If the cannon's attac hed to the ground, you make the EARTH move backwards!

Momentum is always conserved in interactions between two or more objects. If the cannon exerts a force on the cannonball, then the cannonball exerts an equal-sized force on the cannon in the opposite direction.

This is Newton's
Third Law.

If the cannon is on wheels, this force makes it recoil and roll backwards. But if the cannon is attached to the earth, then the whole earth experiences the force from the cannonball! Since momentum is conserved, the earth must recoil backwards - but because the earth is so massive, its recoil velocity is incredibly small. You can work out how small it is ...

Use momentum conservation to work out the approximate velocity that the earth would 'recoil' with if the cannon is firmly attached to it when it is fired.
The cannonball has a velocity of $90.0 \mathrm{~m} / \mathrm{s}$ and a mass of around 1 kg . \qquad
The earth's mass is $5.97 \times 10^{24} \mathrm{~kg} .<$ If you need a refresher Why don't you notice the earth recoiling like this? in scientific notation, turn to chapter 3.

Sharpen your pencil
 Solution

Use momentum conservation to work out the approximate velocity that the earth would 'recoil' with if the cannon is firmly attached to it when it is fired.

The cannonball has a velocity of $90.0 \mathrm{~m} / \mathrm{s}$ and a mass of around 1 kg .
The earth's mass is $5.97 \times 10^{24} \mathrm{~kg}$.
Why don't you usually notice the earth recoiling like this?
Total momentum of earth and cannonball at start $=0$
Total momentum of earth and cannonball after firing $=0$ (momentum conservation)

$$
p=m_{1} v_{1}+m_{2} v_{2}=0
$$

Want to know v, so rearrange equation.

$$
m_{1} v_{1}=-m_{2} v_{2}
$$

The Earth's velocity is negative, as it moves in the opposite direction to the cannonball.

The earth's recoil velocity is around $1 \times 10^{-23} \mathrm{~m} / \mathrm{s}$ in the

Remember to draw a labelled sketch, so that it's easy for you (and your examiner) to work out what $m_{1} v_{2}$ etc are.
opposite direction to the cannonball's velocity. I
You don't notice this because it would take an incredibly long time to travel any noticeable distance at this velocity!

This answer should only be quoted to 1 sd as the cannonball's mass is listed as 'around I kg ,' so has I sd.

there are no

Dumb Questions

Q:
 When am I allowed to use momentum conservation?

A: : Any time two (or more) objects interact, momentum is conserved, so you can say $\mathbf{p}_{\text {before }}=\mathbf{p}_{\text {after: }}$. As long as you keep track of which mass and velocity is which, you're fine.

QSo I guess I can use the same type of calculation to work out what happens with the stone cannonball?
A : Yes - momentum conservation is the vital key to working out what happens there. Speaking of which ...
do this using an experiment (like here). Sometimes you'll need to think through assumptions using words, graphs or equations.

Test out any assumptions you have

If the cannon exerts the same force for the same amount of time on the stone cannonball as it does on the iron cannonball, the change in momentum would be the same for both cannonballs.

But right now this is an assumption, as the cannon may not always exert the same force for the same amount of time.

To investigate this further, you can revisit the experiment you did earlier...

Sharpen your pencil

So, does the cannon exert the same force on the stone cannonball as it exerts on the iron cannonball?

The same size of force applied for the same amount of time always leads to the same change in momentum.
Therefore, if a spring pushing two vehicles apart always exerts the same force on both vehicles for the same amount of time, then each individual vehicle will experience the same change in momentum every time you do the experiment.
a. The table below is taken from your experiment a few pages ago, where you pushed two vehicles of varying masses apart with the same spring. Complete the table to show the change in momentum for each vehicle.

Mass 1 (kg)	Mass 2 (kg)	Velocity 1 $(\mathrm{m} / \mathrm{s})$	Velocity 2 $(\mathrm{m} / \mathrm{s})$	Change in momentum 1 $p_{1}=m_{1} v_{1}(\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s})$	Change in momentum 2 $p_{1}=m_{1} v_{1}(\mathrm{~kg} . \mathrm{m} / \mathrm{s})$
0.450	0.150	-0.21	0.63	$0.450 \times-0.21=0.094(2 \mathrm{sd})$	$0.150 \times 0.63=0.094(2 \mathrm{sd})$
0.450	0.300	-0.27	0.40	$0.450 \times-0.27=0.12(2 \mathrm{sd})$	$0.300 \times 0.40=0.12(2 \mathrm{sd})$
0.450	0.450	-0.29	0.30	$0.450 \times-0.29=0.13(2 \mathrm{sd})$	$0.450 \times 0.30=0.14(2 \mathrm{sd})$

b. Is the change in momentum of a single vehicle always the same in each trial of the experiment?

No, the change in momentum isn't the same. It seems to get larger as the masses of the vehicles get larger.
c. Try to think of reasons to explain the result you described in part b. Does this have implications for the iron and stone cannonballs, which are fired separately and have different masses?
The change in momentum is only the same on different occasions if the same force is applied for the same time.
As the masses of the vehicles get larger, the change in momentum increases. The larger a vehicle's mass, the more difficult it is to get the vehicle going. So maybe the vehicles with larger masses spend more time in contact with the spring, so the force isn't applied over the same time.

The iron cannonball has a larger mass than the stone cannonball. This means that it's more difficult to get it going. So it may spend a longer time inside the cannon, and end up with a larger momentum.

If the force is different every time, how are we supposed to solve the problem?!

You can use momentum conservation

You're allowed to do horizontal test firings. Although we didn't see any point in this before, as we can't measure the cannonball's velocity or displacement, we can measure things ON the ship.

This means we can measure the cannon's velocity for firing the iron cannonball, and the cannon's velocity for firing the stone cannonball.

Then we can use what we've learned about momentum conseervation to put the pieces together ..

Var, we can test-fire the cannon - as long as we aim it horizontally and away from the ghost ship!

This is the value given for this particular cannon and cannonball on the website.

Here are the results of two horizontal test firings, where the cannon's recoil velocity was measured.

Iron cannonball: Cannon velocity $=0.126 \mathrm{~m} / \mathrm{s}$, Cannonball velocity $=90.0 \mathrm{~m} / \mathrm{s}$

Stone cannonball: Cannon velocity $=0.063 \mathrm{~m} / \mathrm{s}$
The only other fact you know is that the mass of the iron cannonball is four times the mass of the stone cannonball. If you knew the mass of the cannon you'd be fine, but it's far too heavy to measure using scales. But there's another way to measure the mass of the cannon...
a. Use momentum conservation to calculate m_{c} the mass of the cannon, in terms of m_{i} the mass of the iron cannonball.

> You won't be able to give your answer as just a number. Your answer will look something like $m=400 \mathrm{~m}$, which would tell you that the cannon has 400 times the mass of the iron cannonball.

By the way, this isn't the correct answer, it's just an example of what an answer would look like!
b. Use momentum conservation and your answer from part a. to calculate the velocity of the stone cannonball. The stone cannonball's mass is a quarter of the mass of the iron cannonball.

> Don't worry about calculating the range yet
> - you'll do that next.

Sharpen your pencil Solution

Stone cannonball: Cannon velocity $=0.063 \mathrm{~m} / \mathrm{s}$.

Iron Cannonball

$$
\begin{gathered}
m_{c}=? \\
v_{c}=-0.126 \mathrm{~m} / \mathrm{s} \\
p=m_{c} v_{c}+m_{i} v_{i}=0
\end{gathered}
$$

Sometimes you'll be asked to do a problem where your final answer isn't a number. That's OK. re

$$
\begin{aligned}
m_{c} v_{c} & =-m_{i} v_{i} \\
m_{c} & =\frac{-m_{i} v_{i}}{v_{c}}
\end{aligned}
$$

a. Use momentum conservation to calculate m_{c} the mass of the cannon, in terms of m_{i} the mass of the iron cannonball.
b. Use momentum conservation and your answer from part a. to calculate the velocity of the stone cannonball. The stone cannonball's mass is a quarter of the mass of the iron cannonball.

Stone Cannonball

$$
m_{c}=714 m_{i} \quad m_{s}=m_{v}=2 \mathrm{~m} / \mathrm{s} \text { if you }
$$

$$
v_{c}^{c}=-0.063 \mathrm{~m} / \mathrm{s}
$$

$$
\partial_{v_{s}}=? \mathrm{~m} / \mathrm{s}
$$

$$
\begin{array}{r}
p=m_{c}^{v} v_{c}+ \\
\text { You don't know actual values }
\end{array}
$$

$$
p=m_{c_{c}} v_{D}+m_{s} v_{s}=0
$$

for any of the masses - but

$$
\begin{aligned}
& \text { for any of the masses - but } \\
& \text { the terms in the momentum }
\end{aligned}
$$

$$
m_{s} v=-m_{c} v v_{c}
$$

conservation equation all
mention masses.

$$
v_{s}=\frac{-m_{c} v_{c}}{m_{s}}
$$

Stone cannonball: Cannon velocity $=0.063 \mathrm{~m} / \mathrm{s}$.
Don't put units.

on an answer like this. The units of m_{c} will depend on the units that m is measured in.

Try the variables from your sketch in equations to see what happens

Often, you won't know how a problem's going to work out until you start writing down equations and playing with them.
So don't get stressed if you don't know many values at the start. Do your sketch, write down everything you know, and jot down how you'd do the problem and which equations) you'd use.
Then play with the equations! You'll often find that variables cancel and the equation simplifies down to a calculation you're able to do.

If you don't know values for the variables you're working with, play with the equations. Some of the variables may divide out and cancel.

You've calculated the stone cannonball's velocity...

Although the cannon doesn't always exert the same force on a cannonball, momentum is always conserved on every occasion that the cannon is fired.

You've just used momentum conservation twice. The first time was for firing the iron cannonball, which allowed you to calculate the mass of the cannon. The second time was for the stone cannonball, which allowed you to calculate the velocity of the stone cannonball: $180 \mathrm{~m} / \mathrm{s}$.

Momentum conservation allows you to calculate masses or velocities that you don't already know.

... but you want the new range!

You already know that you can work out the cannonballs' range if you know its velocity - you already did that for the iron cannonball.
But that was a long, involved calculation which took you quite a while.

Use proportion to work out the new range

Your earlier calculation to work out the range of the iron cannonball had three parts:

Part a: Work out the vertical and horizontal components of the initial velocity, $\mathbf{v}_{0 \mathrm{v}}$ and $\mathbf{v}_{0 \mathrm{~h}}$.
Part b: Use the vertical component and the equation $\mathbf{v}_{\mathrm{v}}=\mathbf{v}_{0 \mathrm{v}}+\mathbf{a}_{\mathrm{v}} t$ to work out the time the cannonball is in the air for.

Part c: Use the horizontal component and the equation $\Delta \mathbf{x}_{\mathrm{h}}=\mathbf{v}_{0 \mathrm{~h}} \Delta t$ to work out the cannonball's horizontal displacement in that time.

You've calculated that the stone cannonball's initial velocity \mathbf{v}_{0} is two times greater than the iron cannonballs' velocity.

So rather than doing the entire calculation again with a different value for \mathbf{v}_{0}, you can use proportion to work out the new range ...

Sharpen your pencil

a. If the initial velocity is 2 times greater than before, how many times greater are its horizontal and vertical components?
b. The vertical component of the velocity is used in the equation $\mathbf{v}=\mathbf{v}_{0}+$ at to work out the time in the air. How many times greater is the time in the air with the new cannonball?
c. The horizontal component of the velocity and the time in the air are used in the equation $\Delta \mathbf{x}_{\mathrm{h}}=\mathbf{v}_{\mathrm{h}} \Delta t$ to work out the range. How many times greater is the range with the new cannonball?

The range is the same as the horizontal component of the displacement.
 d. The range of the iron cannonball fired at 10° is 282 m . What is the range of the stone cannonball when it's fired at 10° ?

Solution

a. If the initial velocity is 2 times greater than before, how many times greater are its horizontal and vertical components?

The angle is still the same, so they're similar triangles. If one side is two times longer, the other sides are too.

Both components are 2 times greater than before.

b. The vertical component of the velocity is used in the equation $\mathbf{v}_{\mathrm{v}}=\mathbf{v}_{\mathrm{ov}}+\mathbf{a}_{\mathrm{v}} t$ to work out the time in the air. How many times greater is the time in the air with the new cannonball?

Both v_{v} and $v_{o v}$ are 2 times larger. When you rearrange the equation to say " $t=$ something" it becomes $t=\frac{v_{v}-v_{0 v}}{a_{v}}$ When you're adding or subtracting (which you are before you divide by a) and the numbers you're dealing with become two times larger, your answer also becomes two times larger.
c. The horizontal component of the velocity and the time in the air are used in the equation $\Delta \mathbf{x}_{\mathrm{h}}=\mathbf{v}_{\mathrm{h}} \Delta t$ to work out the range. How many times greater is the range with the new cannonball?

Both v_{h} and t are 2 times greater then before.
As they're multiplied together to give Δx_{b}, this means that Δx_{h} is 4 times greater than before, as $2 \times 2=4$.
d. The range of the iron cannonball fired at 10° is 282 m . What is the range of the stone cannonball when it's fired at 10° ?

New range is 4 times greater than old range.
New range $=4 \times 282=1130 \mathrm{~m}(3 \mathrm{sd})$
there are no

Dumb Questions

Q: What's the 'similar triangles' thing again? It rings a bell ...

A: If two triangles have identical angles, then the ratios of their sides are equal. You used that before to work out sin, cos, and tan.

Here, if you make the velocity two times larger, then the whole triangle also becomes two times larger - as do the components.

Q: Oh yeah. But what's this bit about adding rather than multiplying v_{v} and $v_{o v}$?
A : The rearranged equation is $t=\frac{v_{v}-v_{0 v}}{a_{v}}$ Since $v_{0 v}=-v_{v}$ (they have the same size but are in opposite directions), the bit on top of the fraction is 2 times greater than it was before. And since \mathbf{a} is constant, t is also 2 times greater than before.

Q: What about part c?

A:: That equation is $\Delta \mathbf{x}_{\mathrm{h}}=\mathbf{v}_{h} \Delta t$. You're now dealing with the horizontal component of the velocity, \mathbf{v}_{h}, which is two times greater than before. And the time, t, is also two times greater than before. So the term $\mathbf{v} \Delta t$ is four times greater, as $2 \times 2=4$.

> Using proportion to work out the answer to a question that's similar to one you already did can be a good shortcut.

If you can see a way you understand that works for you, then go for it!

Although it's quicker to do this question using proportion, if you can see a different (albeit longer) way of doing it that you know you definitely understand, then go for it!

Some exam-style questions do ask you proportion questions like "what would happen to the maximum height if the velocity was doubled?"- we'll look at some questions like that in a later chapter.

You solved the pirates' problem!

The Sieges-R-Us hype is justified! The vertical component of the stone cannonball's velocity is two times greater than for the iron cannonball, so the time in the air is two times greater as well. If the horizontal component of the velocity was the same for both cannonballs, then the stone cannonball would go two times as far (as it's in the air for two times as long).
But the horizontal component of the stone cannonball's velocity is also two times greater than the horizontal component of the iron cannonballs' velocity. So the stone cannonball's range is a massive four times further than the iron cannonball's!

So the ghost ship has to stay $4 \times 282 \mathrm{~m}=1130 \mathrm{~m}$ away - where it doesn't cause problems any more. Another job well done!

Question Clinic: The "Proportion" Question (often multiple choice)

 Multiple choice exam, which don't give you numerical values. Instead theymay say that something is 'three times the mass' or has 'double the momentum'
of something else. These are designed to test your understanding of the
physics, rather than your ability to press buttons on a calculator.

Start with a sketch!

Then you'll spot that this question is about momentum conservation.

2. An adult and a child are on an ice rink. The child has mass m and the adult has mass $3 m=$ The child pushes the adult, and as a result the adult slides backwards with velocity v . What is the size of the child's velocity?

The child has a lower mass, so it will go faster than the adult when they push with the same force. So you can already eliminate any answer where the child is going slower than the adult, or at the same speed.

The adult and child experience the same force for the same amount of time (Newton's 3rd Law). So mass x velocity should have the same size for the adult and the child. As the child is a third of the mass of the adult, the child's velocity needs to be three times greater than the adult's velocity.

The 'proportion' question may look like it's from a 'weird' part of physics - for instance a question about an atomic nucleus that splits into two parts. The key is to see past the story - start with a sketch - what is it like? When you do this, you'll realize that it's the same as two things being pushed apart and you can use momentum conservation to solve the problem.

This tells you that it's a proportion question, so don't worry about not knowing any values.

Velocity is a vector, but this question only wants the size, not the direction.

Your Physics Toolbox

You've got Chapter 10 under your belt and added some problem-solving skills to your ever-expanding toolbox.

Vary one thing at a time
 If you're doing an experiment, you should

 only vary one thing at a time.This means that you can know for certain what has caused any change to your results that you observe.

Newton's lIst law

An object continues with its current velocity unless it's acted on by a force.
In everyday life, things appear to slow down as time passes, but that's because of the force of friction.

Proportion

If you have an equation, you can work out what happens to the answer you get if you change one of the variables by a certain amount (e.g., doubling, tripling or halving it).
If you've already used the equation, this can be faster than redoing the same calculation with different values.

11 weight and the normal force

Sometimes you have to make a statement forcefully.

In this chapter, you'll work out Newton's 2nd Law from what you already know about momentum conservation to wind up with the key equation, $\mathbf{F}_{\text {net }}=m a$. Once you combine this with spotting Newton's 3rd Law force pairs, and drawing free body diagrams, you'll be able to deal with (just about) anything. You'll also learn about why mass and weight aren't the same thing, and get used to using the normal force to support your arguments.

WeightBotchers are at it again!

WeightBotchers claim that their new product guarantees instant weight loss. It's been difficult to miss their brash advertisements since the campaign launched last week.

But the TV show FakeBusters doesn't buy those claims, and want you to investigate the details. If you can prove that the WeightBotchers machine is a hoax, your work will be featured in a special episode in their next series.

Re: WeightBotchers

We're planning to include a 10 minute slot in our next series looking into the claims made by WeightBotchers about their latest product.
If you can bust the fake with physics, we'd love to have you on our show.

Is it really possible to lose weight instantly?!

Here's the deal. The machine has a platform at the top with some scales on it. When you stand on the scales, they read the same number of kilograms as they usually would in your bathroom. No surprises there.

But then the platform you're standing on suddenly moves downwards - and the reading on the scales becomes lower. Numbers don't lie - so if the reading's gone down then you must have lost weight. Right?

Just before you reach the bottom of the machine, the scales are switched off to protect them from the impact with the cushioned landing area.

There must be a trick involved somewhere... but what is it? The scales don't look fake and read the same number of kilograms as usual when they're not on the machine.

So maybe it's something to do with what the machine does and how the scales produce a measurement.

Scales work by compressing or stretching a spring

Some scales work by compressing a spring. If you put pieces of fruit on top that are all more or less the same size, the spring will compress by the same amount each time you add another piece. The change in length of the spring is converted into a reading in kilograms.

Another type of scales works by stretching a spring. This is exactly the same principle as compressing a spring, except that you hang an object from the spring rather than putting it on top. Again, a change in length is converted into a reading in kilograms.

A spring will always compress/ stretch by the same amount for the same load, to give a consistent reading.

A marker at the end of the spring points to a scale showing the current weight.

This loop's attached to the end of the spring, and can be pulled by something.

Jim: Yeah, I'm struggling as well. I don't see how the person's lost weight. It's not like they were wearing a rucksack full of boulders that they suddenly took off, or anything.

Joe: Maybe it's something to do with how the scales make their measurements. Scales don't measure the number of kilograms directly - scales measure the change in length of a spring.

If you know HOW

 your measuring devices work, you can trouble-shoot your experiments when unexpected things happen.Frank: Hmmm. You mean if I put the scales against the wall and pushed them with my hand, they'd register a number of kilograms. Yeah, I can see that.

Jim: That's weird. Kilograms are units of mass, right? Mass is the amount of 'stuff' something's made from. But if you push the scales sideways like that, the reading depends on the force that you push with, not on the amount of stuff your hand's made from.

Joe: I guess that's because the scales don't really measure kilograms directly - they measure the change in the length of the spring. And that must depend on the force that the spring's pushed with.

Frank: If I'm standing on the scales, I'm kinda pushing down on the spring inside them because of gravity. I guess that because of gravity, a certain number of kilograms must produce a certain force - and a certain change in length of the spring. So the scales always assume that you're standing on them when making a measurement.

Joe: So if you use the scales differently from how the manufacturer intended - by pushing them against the wall, or perhaps by making them move down like the WeightBotchers machine does - then you get a flakey reading.

Frank: That sounds plausible - but personally I'd like to get my head around how force (which seems to do with pushing) and mass (which is to do with the 'stuff' you're made of) are connected ...

Mass is a measurement of "stuff"

Mass is an indication of how much 'stuff' something is made from, and is measured in kilograms. Mass is a scalar, as 'stuff' can't have a direction - it's just what's there.
Even though the scales indicate otherwise, the person on the WeightBotchers machine always has the same mass - it's not like they took off a rucksack or had a haircut halfway down and lost a whole lot of matter.

MASS is how much "stuff" something's made of. It's a scalar, because 'stuff' doesn't have a direction.

Weight is a force

If you put the scales against the wall, you can exert a horizontal force on them by pushing them with your hand and compressing the spring.

Force is a vector because it has direction - the direction that you're pushing the spring in.

The force vector of the fruit's weight points in this direction.

Although the scales give a reading in kilograms, they actually make measurements based on the change in length of the spring. So if you put fruit on the scales and the spring's length changes, there must be a force involved.

The change in length comes about because the spring has to counteract the fruit's weight, which is there because the fruit is in the earth's gravitational field. The fruit's weight is the force exerted on it by the earth's gravitational pull. You can draw the fruit's weight as a force vector arrow pointing down, towards the center of the earth.

> WEIGHT is the FORCE you experience as a result of being in a gravitational field.

$\underbrace{\text { this is foreve ector }}_{\text {An wight is a force }}$
0n Earth, your weight vector points down, towards the center of the earth.

Mass. Stuff. Scalar.

Weight. Force. Vector.

But people say things like "I weigh 60 kilograms" all the time. How can you say that mass and weight are different?

Mass and weight are different!

In everyday speech, people use the words "mass" and "weight" like they're the same thing. But in physics we need use these words more carefully.
If you go to the moon, your mass is the same number of kilograms as it is on earth, as you're still made from the same amount of 'stuff'.
But weight is the force you experience as a result of being in a gravitational field. And as the moon's gravitational field is smaller than the earth's, your weight is less on the moon than it is on Earth even though your mass is still the same.

Your mass is the same on the earth and the moon. So the scales measure the force it takes to compress a spring, then convert the force that causes a certain change in spring length into kilograms? It sounds like the relationship between mass and weight is really important here.

The way that the scales convert a force into a reading in $\mathbf{k g}$ is crucial.

If you stand on the scales on the moon, the scales will read the wrong number of kilograms - even though your mass hasn't changed. This is because the scales assume you're on earth when they convert the change in length (as a result of an applied force) into a reading in kilograms.

If you can work out the relationship between force and mass that the scales use to do this conversion, you'll be able to debunk the WeightBotchers machine.
 Earth.

Weight

Have you seen an equation that involves both force and mass somewhere before?

The relationship between force and mass involves momentum

In chapter 10, you figured out that when you apply the same force for the same amount of time to any object, you always give it the same change in momentum. As long as there are no other forces acting on the object, you can write this as an equation:

But momentum is mass \times velocity. So you can substitute in $m \mathbf{v}$ every time you see a \mathbf{p} and rewrite this equation as:

Newton's Second Law:
 If you apply a $\$ force NET to any object For a period of time, the change in the object's momentum always has the same value.

$F_{\text {net }} \Delta \mathbf{t}=\Delta(\mathbf{m v})$

(This equation works for any number of forces acting on the object added together to make the net force, $F_{\text {net }}$
 right - its momentum would change in the direction of the net force.

Sharpen your pencil

a. After introducing a subscript to make it clear that it is the net force that causes the change in momentum, the equation on the opposite page, $\mathbf{F}_{\text {net }} \Delta t=\Delta(m \mathbf{v})$ can be rearranged to say $\mathbf{F}_{\text {net }}=\frac{\Delta(m \mathbf{v})}{\Delta t}$ Use this equation to work out the units of force.
b. Your equation contains the term $\frac{\Delta(m \mathbf{v})}{\Delta t}$. Do both m and \mathbf{v} change with time while a force is applied? (Assume that the situation is one where an elephant or mouse has been pushed with a net force.)
c. Does your answer to part b give you any ideas about how you might simplify your equation $\mathbf{F}_{\text {net }}=\frac{\Delta(m \mathbf{v})}{\Delta t}$ Hint: What other equations
do you know where a variable
changes with time?
a. After introducing a subscript to make it clear that it is the net force that causes the change in momentum, the equation on the opposite page, $\mathbf{F}_{\text {net }} \Delta t=\Delta(m \mathbf{v})$ can be rearranged to say $\mathbf{F}_{\text {net }}=\frac{\Delta(m \mathbf{v})}{\Delta t}$ Use this equation to work out the units of force.

$$
\begin{array}{ll}
{[\mathrm{m}]=\mathrm{kg}} \\
{[\mathrm{v}]=\mathrm{m} / \mathrm{s}}
\end{array} \quad[t]=\mathrm{s} \quad[\mathrm{~F}]=\frac{\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}}{\mathrm{~s}}=\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \quad \text { If you say this out loud, it's: } \quad \text { "kilogram-meters per second } \mathrm{s}
$$

b. Your equation contains the term $\frac{\Delta(m \mathbf{v})}{\Delta t}$. Do both m and \mathbf{v} change with time while a force is applied? (Assume that the situation is one where an elephant or mouse has been pushed with a net force.)

The velocity changes but the mass doesn't change.
c. Does your answer to part b. give you any ideas about how you might simplify your equation $\mathbf{F}_{\text {net }}=\frac{\Delta(m \mathbf{v})}{\Delta t}$ You could turn it into $F=m \frac{\Delta v}{\Delta t}$ as the mass is constant.
And $\frac{\Delta v}{\Delta t}$ is the acceleration. So it could become $F=$ ma. Don't worry if you didn't spot this.

If the object's mass is constant, $F_{\text {net }}=$ ma

Newton's Second Law says that if you apply a net force to an object for a period of time, then its momentum changes. So force is the rate of change of the momentum of an object:

$$
\mathbf{F}_{\text {net }}=\frac{\Delta(m \mathbf{v})}{\Delta t} \quad \begin{aligned}
& \text { Rate of change } \\
& \text { of momentum }
\end{aligned}
$$

Typically, the mass of an object doesn't change during the time that the force is applied. This means that m is constant and only \mathbf{v} changes with time. And you already know that $\frac{\Delta \mathbf{v}}{\Delta t}$ is the rate of change of velocity - in other words, the acceleration.
So you can rewrite Newton's Second Law as:

$$
\mathbf{F}_{\mathrm{net}}=m \mathbf{a}
$$

This shows you that the units of force are $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$. However, as this is a rather unwieldy unit to write out, physicists have come up with a new unit, the Newton (N) where $1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$.

So if you do a calculation to work out a force where the mass is in kg and the acceleration is in $\mathrm{m} / \mathrm{s}^{2}$, you'd write your answer as 10 N instead of $10 \mathrm{~kg} . \mathrm{m} / \mathrm{s}^{2}$.

Dumb Questions

Q:So why not just say " $F_{\text {net }}=$ ma" from the start? Why all this stuff about momentum first?
A : This book is about understanding physics. Rather than nodding and accepting " $F_{\text {net }}=$ ma" with no reason for it, we went back to what you discovered about momentum in chapter 10, when you used a force to change the momentum of various objects. You've just used what you already knew about momentum to work out this form of Newton's Second Law for yourself.

Q:Won't the mass of an object always be constant? So you can always use $F_{\text {net }}=m a$?
A: Sometimes, both the mass and velocity of an object can change. For example, a rocket going into space carries a large mass of fuel, which it continually burns. As time goes on, its velocity gets larger, but its mass gets smaller as the fuel gets used up. So both the mass and velocity change with time, which means that you'd need to treat the $\Delta(m \mathbf{v})$ part of the equation $\mathrm{F}_{\text {net }} \Delta t=\Delta(m \mathbf{v})$ differently.

Q: If an object's mass stays the same, you can say $F_{\text {net }}=m a$. But if its mass changes, you have to say $\mathrm{F}_{\text {net }} \Delta t=\Delta(m v)$?
A: Yes. The equation $\mathrm{F}_{\text {ne }} \Delta t=\Delta(m \mathbf{v})$ works for any object, whether its mass is constant or not.

The equation $\mathbf{F}_{\text {net }}=$ ma only works for an object whose mass is constant.

Q: But how do I know which equation to use?

A: If you're interested in the object's velocity or momentum rather than its acceleration, $\mathrm{F}_{\text {net }} \Delta t=\Delta(m \mathbf{v})$ is the most useful form of Newton's Second Law.

If you're interested in the object's acceleration, then $F_{\text {net }}=m a$ its the most useful form of Newton's Second Law (as long as the mass of the object is constant).

But you don't need to worry about this too much, since it's not the part of the physics that we'll cover in this book.

g is the gravitational field strength.

On earth,

$g=9.8 \mathrm{~m} / \mathrm{s}^{2}$ 勺
Different physics courses use slightly different values for g. AP Physics uses $9.8 \mathrm{~m} / \mathrm{s}^{2}$

Weight = mg

Weight is the force that causes an object to accelerate when it falls.

If you drop an apple, it accelerates at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$. This is because the earth's gravitational field strength is $9.8 \mathrm{~m} / \mathrm{s}^{2}$. You now know that for something to accelerate, a net force must act on it.

The only force acting on the falling apple is its weight. You can think of this as a gravitational force which results from the stuff that the earth's made of and the stuff that the apple's made of attracting each other.

Even when the apple isn't falling, it's still subject to the same gravitational force, so it still has the same weight - its mass \times the gravitational field strength, or $m \mathbf{g}$ (we use the letter \mathbf{g} to represent the gravitational field strength).

Jim: Right - and my weight is due to the "stuff" I'm made of and the "stuff" the earth's made of attracting each other. So we can think of weight as being a gravitational force.

Joe: Yeah, your weight is the reason you accelerate towards the ground at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ when there's nothing to support you. And $\mathbf{F}_{\text {net }}=m \mathbf{a}$, so if I have a mass of 80.0 kg , my weight must be $80 \times 9.8=784 \mathrm{~N}$ as that's the gravitational force on me.

Frank: Yeah, and if you're not accelerating, that force of your weight's still there, and is still 784 N , as weight $=m \mathbf{g}$. I guess that means that if my mass is constant, then the force of my weight is constant whatever's going on - my weight is still $m \mathbf{g}$.

Jim: But the force that the WeightBotchers machine measures goes down when the scales move downwards!

Jim: Yeah, that's a puzzle. The scales can't be measuring weight directly, or else they would always have the same reading. So if the scales don't measure weight, what force do the scales measure?!

Joe: I think the key thing might be that the scales on the
WeightBotchers machine are accelerating towards the ground when the reading changes.

Frank: But why would that change the reading?
Joe: I guess that the scales aren't supporting you as much as they were before they started to move.

Jim: Yeah ... when you stand on the scales, the spring inside the scales compresses until it provides enough force to support you - to stop you moving down any further. And it's the compression of the spring that the scales measure.

Joe: Yeah, the scales measure the support force!
Frank: So if the scales aren't totally supporting your weight, the reading would be less?

Joe: I think that's probably right.

The scales measure the support force

Your weight is always $m \mathbf{g}$. If you're falling, then the force of your weight causes you to accelerate. But if you're stationary, the thing you're standing on must be exerting a support force on you in the opposite direction from your weight - otherwise you'd be falling!

When you stand on scales that are sitting on the ground, you compress the spring and continue to move down slightly until the spring is compressed enough to exert a support force on you that's equal to your weight. Then the net force on you is zero.

> If you are stationary, the net force acting on you must be zero.
a. What is the weight of an 80 kg person?
c. What is the net force on the person?
e. Now, imagine that the person on the scales grabs onto a couple of rings hanging from the ceiling, and pulls down on them with a force of 200 N. Draw a sketch showing all the forces acting on the person, including both the support force provided by the rings, and the support force provided by the scales.
b. An 80 kg person stands stationary on some scales that are sitting on the ground. What support force do the scales need to exert on the person to prevent them from breaking or falling through the scales?
d. Draw a sketch of the person showing all of the forces acting on them. Use labeled vector arrows pointing away from the person to represent the forces.

$$
<\begin{aligned}
& \text { ONLY draw the } \\
& \text { person - don't } \\
& \text { draw the scales } \\
& \text { or the earth or } \\
& \text { anything else. }
\end{aligned}
$$

f. What reading (in kg) do the scales show when the person is partially supported by the rings, as described in part e?
a. What is the weight of an 80 kg person?

$$
\begin{aligned}
\text { weight } & =\text { mass } \times \text { gravitational field strength } \\
& =80.0 \times 9.8 \\
\text { weight } & =784 \mathrm{~N}
\end{aligned}
$$

c. What is the net force on the person?

The net force is $O N$, as the weight acts downwards, the support force acts upwards, and the weight and support force are equal sizes.
e. Now, imagine that the person on the scales grabs onto a couple of rings hanging from the ceiling, and pulls down on them with a force of 200 N . Draw a sketch showing all the forces acting on the person, including both the support force provided by the rings, and the support force provided by the scales.

Rings support
force, $200 \mathrm{~N} \uparrow \uparrow \begin{aligned} & \text { Scales support } \\ & \text { force, } 584 \mathrm{~N}\end{aligned}$

b. An 80 kg person stands stationary on some scales that are sitting on the ground. What support force do the scales need to exert on the person to prevent them from breaking or falling through the scales?

The person's weight is 784 N . So to stop them breaking the scales, the support force needs to be 784 N .
d. Draw a sketch of the person showing all of the forces acting on them. Use labeled vector arrows pointing away from the person to represent the forces.

f. What reading (in kg) do the scales show when the person is partially supported by the rings, as described in part e?

Scales provide a support force of 584 N and assume that $F=m g$

$$
\begin{aligned}
\Rightarrow m & =\frac{F}{9}=\frac{584}{9.8} \\
m & =59.6 \mathrm{~kg}(3 \mathrm{sd})
\end{aligned}
$$

Scales measure the support force provided by the spring, then convert this into kilograms using $\mathbf{F}=m \mathbf{g}$ to tell you what your mass is.

If, for some reason, the support force isn't equal to your weight, then the scales will still convert the support force into kilograms. However, this reading in kilograms will not be equal to your mass, as the support force wasn't the same size as your weight.

Scales measure the support force.

Now you can debunk the machine!

You've worked out that the scales measure the support force - and that if the support force is less than your weight, the reading on the scales will be less than your mass.

One of the tools you've used to do this is a free body diagram. This is just another name for a sketch of an object showing all of the forces acting on it, and it's a very useful way of analyzing forces.

This is a sketch.

 sketch because it only shows ONE object. Weight $=m g$

A free body diagram shows an object plus all of the forces acting on it, and nothing else.

A free body diagram only shows one object. So only draw the person - not the scales or the machine.

Speaking of analysis, the FakeBusters team think they've made a breakthrough! They've looked at the advertisement and worked out that the machine is accelerating downwards at a rate of $2.0 \mathrm{~m} / \mathrm{s}^{2}$ while the low reading is being taken.

You can use this fact to demonstrate why the WeightBotchers machine gives false readings.

d. Explain why the reading on the scales is lower than it would be if the scales were stationary.

Be careful not to get the variable used to represent mass and the unit of meters mixed up. They are both represented by the letter ' m ' (but in different contexts).
a. Draw a free body diagram for the person, mass m, on the WeightBotchers machine, inside the box to the right.
(There's no need to include the values of forces you've not calculated yet, just words to describe what they are.)

b. Newton's Second Law, $\mathbf{F}_{\text {net }}=$ ma, says that an object accelerates if all of the forces acting on it add up to a non-zero net force. The person on the machine accelerates downwards at a rate of $2.0 \mathrm{~m} / \mathrm{s}^{2}$. Use these facts to derive an equation for the support force from the scales.

Make down the positive direction. \longleftarrow
Force is a vector,

The net force is the weight and the support $F_{\text {net }}=m a<$ force added together.
$\Rightarrow m g-F_{s}=2.0 \mathrm{~km}$
We chose this symbol
for support force. $\geqslant F_{s}=m g-2.0 \mathrm{~m}$
so you need to get the signs right.
c. The scales will give a reading in kg . What will this reading be?
Scales assume that measured $F=m g$, so divide support force by 9 to get mass in kg . Reading $=\frac{m g-2.0 m}{9}$
Reading $=m-\frac{2.0 m}{9} \quad \int_{(1-0.204) m}^{(1-0 m}$
Reading $=m-\frac{2.0 m}{9.8}=m-0.204 m$
Reading $=0.80 \mathrm{~m} \mathrm{~kg}(2 \mathrm{sd})$
d. Explain why the reading on the scales is lower than it would be if the scales were stationary. As the person is accelerating downwards, there must be a net downwards force. This means that the support force (what the scales measure) is less than the person's weight.

The machine reduces the support force

The WeightBotchers machine 'works' because scales measure the support force that the scales exert on the person that stands on them. If the support force is less than your weight, then the reading on the scales is also less then your weight.

The machine accelerates you downwards. This means that there must be a net force acting on you to produce the acceleration, as $\mathbf{F}_{\text {net }}=m \mathbf{a}$. The only force acting downwards on you is your weight, and the only force acting upwards is the support force.

So if you're accelerating downwards, the support force must be less than your weight and the scales will in turn have a lower reading - that's how WeightBotchers are doing it.

Q:So the scales don't measure my mass ... and they don't even measure my weight?!
A: The scales measure the force that the spring is exerting on you, which we've called the support force here. They calculate the support force from the change in the length of the spring.

Q:So how is it possible for the scales to measure a support force that's less than my weight?

A:If the scales are only partially supporting you (for example, if you're partially pulling yourself up using rings, or you have one foot on the scales and one foot on the floor) then they will provide only part of the supporting force.

The forces in a Newton's 3rd Law pair act on different objects.

A free body diagram has only one object in it, and shows only the forces experienced by that object. For example, your free body diagram might show your weight and a support force.

Newton's 3rd Law says that forces come in pairs - and that each force in a pair acts on different objects. So if the earth exerts a gravitational force on you, you exert an equal and opposite gravitational force on it. And if the scales are exerting a support force on you (by virtue of you and the scales being in contact), you're exerting an equal and opposite contact force on them.

QWhat would happen if the upwards force was larger than my weight? Like if I sat on a rocket or something?

A:: Then there'd be a net force upwards, so you would accelerate upwards.
Q: rIve a question about tree body diagrams. Why do the force vector arrows always point away from the object, even when some of them act from underneath (like the support force from scales does)?
A: If you're drawing a free body diagram with several different forces on it, this convention helps you to see at a glance which directions forces are operating in. An arrow above the object must be a force acting upwards, and so on.

Q: Now l've debunked the WeightBotchers machine, do I get to go on television?
$A:$ well ...

Support force from scales.

These forces both act on the same object. So they're not a Newton's 3rd Law pair. Weight $=m g$

The forces in a Newton's 3rd Law pair act on different objects.

Force pairs help you check your work

You need to make sure you worked out the forces involved in the WeightBotchers machine correctly before you present your findings to FakeBusters. And the best way to do that is to make sure that each force you've drawn on your free body diagram is part of a Newton's 3rd Law pair of forces.

This is NOT a free body diagram, as it has more than one object in it and doesn't show all of the forces (the weight and supporting force are both missing).

This is a Newton's 3rd Law pair of forces.

You originally met Newton's 3rd Law back in chapter 10 when you were dealing with pushing two objects apart. In order for momentum to be conserved (an experimental result that you worked out), each object must experience the same size of force but in opposite directions when they interact.

If the objects are " 1 " and " 2 " the pair of forces is:
The force that object 1 exerts on object 2 . The force that object 2 exerts on object 1. J

Your weight is a force that acts on you.

Your weight is a force that acts on you. It must act on you or else you wouldn't fall through the air as a result of it. It points downwards. If it helps, think of it as "gravitational attraction."

The contact force between you and the scales acts on the scales. It also points downwards - but it acts on the scales, not on you.

You can only add together forces if they act on the same object. As these two downwards forces act on different objects, you can't add them together.

It seems that the support force only exists when you're in contact with the scales?

There's a distinction between contact forces and non-contact forces

Gravitational forces are non-contact forces, which can act at a distance. The earth exerts a gravitational force on you whether you're in contact with it or not.

Contact forces only exist if there is contact between two objects. If you stand on the ground you're not accelerating. The net force on you is zero, so your weight and the support force that the ground exerts on you must add to zero.

Newton's 3rd Law says that if the ground is exerting a contact force to support you, then you must be exerting a contact force on it. This makes sense - you can only squash a bug by stepping on it, which involves contact. This can't be done by the force of your weight - as this is a force that acts on you, not on the bug. But it can be done by the contact force that pairs with the support

The forces in a Newton's 3rd Law pair must both be of the same type (for example, both contact or both non-contact).

there are no Dumb Questions

Q:Why is it useful to think about Newton's 3rd Law pairs of forces?
A: When you draw a free body diagram, you're drawing only the forces that act on a single object. Each of these forces must be one of a pair - as when two objects interact, each of them experiences an equal-sized force in opposite directions.

Q:So when I draw a free body diagram, I should think about what the other force in the pair is?
A:
That's right - and you should also think about which two objects are involved in the interaction. This prevents you from accidentally drawing two forces on your free body diagram that act on different objects.

Q:Where does this idea of a 'contact force' with the ground come from? I thought that the Newton's 3rd Law force pair was my weight and the support force.

A:Both your weight and the support force that the scales exert are forces that act on you. They can't be a Newton's 3rd Law force pair, as they don't act on different objects.

Thinking about

 Newton's 3rd Law pairs of forces helps you make sure your free body diagram is correct.Q:- Is there any other way for me to work out what forces might be in a pair?

A:- The forces in a Newton's 3rd Law force pair must be of the same type. So either they both have to be contact forces, or they both have to be non-contact forces.

Q:Why doesn't the contact force I exert on the earth (via the scales, which are attached to the earth) lead to the earth accelerating? Don't I exert a net force on the earth?
A : : As well as the contact force you exert on the earth, you also exert an attractive gravitational force on it, in the opposite direction. So the net force on the earth as a result of you being there is zero, and the earth doesn't accelerate.

Q: What if I wasn't standing on the earth? Then the gravitational force that the earth experiences as a result of me being there must accelerate the earth towards me, right?

A:: That's completely spot on, and a great observation. When you're not standing on the earth, there's a gravitational force pair. The gravitational force on you (your weight) accelerates you towards the earth. And the gravitational force on the earth accelerates it towards you.
Q: So why don't I notice the earth accelerating towards me?

A: - Newton's 2nd Law says that $\mathbf{F}=$ ma. Therefore, $\mathbf{a}=\frac{\mathrm{F}}{\mathrm{m}}$. As the earth has a much much larger mass than you, its acceleration is very small compared to yours. So it's not something you'd notice.

You debunked WeightBotchers!

Your free body diagram of the person on the scales is correct. The support force exerted by the scales on the person is less than the person's weight.

This means that the net force on the person is not zero. A non-zero net force produces an acceleration: $\mathbf{F}_{\text {net }}=m \mathbf{a}$. The net force leads to the person accelerating downwards, as observed on the advert.

The scales measure the support force, and convert it to a mass by assuming that $\mathbf{F}=$ weight $=m \mathbf{g}$. If the support force is less than the person's weight, then the scales read a smaller number of kilograms than they would if there was no acceleration.

FakeBusters are soon back in touch to congratulate you, and arrange for your segment of the show to be filmed.

But WeightBotchers are back!

We spoke too soon. WeightBotchers are back with a new machine - though only the magazine ads for it have appeared so far.

This time, the person on the scales is sliding down a hill. And miraculously (or so it seems), the scales read lower than they did when the person was standing on flat ground.

FakeBusters wants your help busting the new scam with science once again.

Here, the reading on the scales is the same number of kilograms as it would usually be.
 table, so there's practically zero friction.

Memo

From: FakeBusters

Re: WeightBotchers

Great work busting WeightBotchers... but they're back.

Could you investigate WeightBotchers' latest machine, and work out how it produces the results it does? We've enclosed a copy of their ad. If you can bust the fake we'd love to have you back on the show.

Here, the reading
on the scales is
lower than it was
at the top of
the machine!

It's clear from the WeightBotchers ad that when the person's going down the slope, the scales read less than they did on the flat ground at the top of the slope.

So - what's the trick this time?!

How do you think the new machine works?

A surface can only exert a force perpendicular (or normal) to it

If you're standing on a horizontal surface, you don't accelerate. This is because the surface exerts a vertical contact force on you, perpendicular to the surface.
Up until now, we've been calling a perpendicular contact force exerted by a surface a "support force". But a more accurate name for the perpendicular contact force exerted by a surface is the normal force.
This is because whatever angle a surface is at, the surface can only exert a contact force perpendicular, or normal, to itself. Depending on the situation, the normal force may not be supporting an object's weight.

If you try to "stand" on a vertical surface (like a wall), you just fall straight down, as the vertical surface can only produce a horizontal normal force. The vertical surface is unable to provide any support for your weight.

A vertical surface can't exert a vertical force.

The wall will only exert .a horizontal normal
force on you if you exert a horizontal contact force on it.

If you throw a ball horizontally at a vertical wall, it experiences a horizontal normal force from the wall that makes it bounce.

The ball also experiences the force of its weight, but as the ball's weight is parallel to the wall, it doesn't affect the size of the normal force.

The normal force that a surface exerts on you is the same size as the perpendicular force that you exert on the surface, but in the opposite direction.

The normal force that a surface exerts on you is the same size as the perpendicular force you are exert on it, but in the opposite direction. If you are stationary on a horizontal surface, the normal force is equal to your weight. If you push a wall horizontally with a force of 50 N , the normal force is 50 N .

So I guess the scales in the new machine measure the normal force.

Jim: Yeah, the spring in the scales that makes the measurement can only be compressed perpendicular - or normal - to the slope.

Joe: But how do we calculate the normal force this time? Last time we got data from the TV ad, but there's only a magazine ad this time. We need to do this before the deadline for FakeBusters.

Frank: I guess we can measure the angle of the slope...
Jim: How does the angle help us to calculate the normal force?
Joe: It says here: "the normal force that a surface exerts on you is the same size as the perpendicular force that you exert on the surface, but in the opposite direction."

Frank: I think that means we need to think in terms of forces that are parallel and perpendicular to the slope.

Jim: Yeah, I'm sure the net force and the equation $\mathbf{F}_{\text {net }}=m \mathbf{a}$ will come in to it somewhere. Though I'm not really sure where yet...

Hint: An object's acceleration must be in the same direction as the net force acting on the object, since $F_{\text {net }}=$ ma is a vector equation.
a. If a car accelerates horizontally, parallel to the ground, does its acceleration have a component perpendicular to the surface?
b. If a person on a sloped surface accelerates down the slope, parallel to it, does their acceleration have a component perpendicular to the surface?
d. If one component of an object's acceleration is zero, what can you say about the net force acting in the direction of that component?
e. Do your answers to parts a-d give you any ideas about how to deal with the person on the WeightBotchers machine accelerating down the slope?

Sharpen your pencil Solution

Hint: An object's acceleration must be in the same direction as the net force acting on the object, since $F_{\text {net }}=$ ma is a vector equation.
b. If a person on a sloped surface accelerates down
a. If a car accelerates horizontally, parallel to the ground, does its acceleration have a perpendicular component?
No, it only has a parallel (horizontal) component as it is accelerating parallel to the surface.
c. If an object has zero acceleration, what can you say about the net force acting on it?
$F=$ ma so if the acceleration is zero then the net force is zero (even though there may be several forces acting on the object).
the slope, parallel to it, does their acceleration have a component perpendicular to the surface?
No, they only have a parallel component, as they are accelerating parallel to the surface.
d. If one component of an object's acceleration is zero, what can you say about the net force acting in the direction of that component?
If the component of the acceleration in that direction is zero, then the net force in that direction must be zero.
e. Do your answers to parts a-d give you any ideas about how to deal with the person on the WeightBotchers machine accelerating down the slope?
The person is accelerating parallel to the slope but not perpendicular to the slope. If we think about acceleration and force components parallel and perpendicular to the slope, it might work out well, because the perpendicular components will all be zero.

there are no Dumb Questions

Q:- I just want to get some terminology straight. Are the normal force and a support force the same thing or not?

A :: The normal force is the contact force that a surface exerts on you. The normal force always acts perpendicular to the surface, and depends on the force you are exerting perpendicular to the surface

What we were calling the support force earlier on was a specific example of a normal force. We called it a "support force" because it was supporting your weight, which acts perpendicular to a horizontal surface. "Support force" was a good mental image to have when you were getting to grips with how scales work.

Q:
Why are we now using the term 'normal force' instead of 'support force'?

A:: Now, the surface isn't horizontal any more - it's at an angle. The normal force always acts perpendicular to the surface. So the normal force doesn't point in the opposite direction from your weight any more - it's at an angle because the surface is at an angle.

You can't think of the normal force as "supporting" your weight in quite the same way, as the weight vector and normal force vector are not parallel to each other. So it's best to use the term "normal force" rather than "support force" to avoid getting confused.

Q:- We've always talked about horizontal and vertical vector components in earlier chapters. Why are we talking about parallel and perpendicular vector components now?

A: When you're dealing with projectiles, the net force that causes the projectile to accelerate at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the gravitational force. The net force acts vertically, so the projectile accelerates vertically. There's zero net force in the horizontal direction.

When you're dealing with an object accelerating down a slope, the net force acts down the slope, so the object accelerates down the slope. The net force acts parallel to the slope. There's zero net force in the perpendicular direction.

When you slide downhill, there's
 zero perpendicular acceleration

The person on the slope has two forces acting on them: their weight and the normal force from the slope.

> The NORMAL force, \mathbf{F}_{N}, is always perpendicular to a surface.

> The NET force, $\mathbf{F}_{\text {ne }}$, always points in the same direction as the acceleration it causes.

The person slides down the slope, accelerating parallel to the slope. This means that the net force must act parallel to the slope, because Fnet $=$ ma.

This means that the components of the forces perpendicular to the slope must add up to zero.

The only two forces with components perpendicular to the slope are the weight and the normal force. Therefore, the perpendicular component of the weight and the normal force must add up to zero, so that the net force is parallel to the slope.

The force vector angles are related to the angle of your slope.

Your slope is like a right-angled triangle. You can label its angles by calling the angle it makes with the ground θ and its other angle β. You know that the angles in a triangle add up to 180°, and as there's already a right angle in there $\left(90^{\circ}\right), \theta$ and β must add up to 90°.

Your weight vector components also form a right-angled triangle. Because two of the sides of the weight vector triangle are parallel and perpendicular to the slope, the slope triangle and weight vector triangle are similar triangles. So the angle θ from your slope will also appear in your weight vector component triangle.

Use parallel and perpendicular force components to deal with a slope

The reading on the scales is the normal force, which is the same size as the perpendicular component of your weight. This is because the normal force always acts perpendicular to a surface, and always exerts the same size of force on you as you exert on the surface.

The parallel component of your weight is is the net force that leads to you accelerating down the slope.

Time to get on TV ...

Sharpen your pencil

The WeightBotchers ad shows an "instant 5\% reduction" when the person goes down the slope. You're going to calculate the angle the slope would need to be to produce this reduction. Then the Fakebusters team will compare your theoretical calculation with the angle of the slope in the ad.
a. Draw a big vector triangle showing the weight and its components of the weight parallel and perpendicular to the slope, so you can write things on it.
b. If the WeightBotchers scales show a 5\% reduction in someone's mass, what's the angle of the slope? (Assume that the person has mass m, and that the gravitational field strength is $\mathbf{g .}$) $<$

Hint: a 5\% reduction means that the normal force is 95% of the person's actual weight.

c. What is the person's acceleration down the slope?

Hint: Calculate the net force
down the slope, and use $F_{\text {net }}=$ ma

Sharpen your pencil

The WeightBotchers ad shows an "instant 5\% reduction" when the person goes down the slope. You're going to calculate the angle the slope would need to be to produce this reduction. Then the Fakebusters team will compare your theoretical calculation with the angle of the slope in the ad.
a. Draw a big vector triangle showing the weight and its components of the weight parallel and perpendicular to the slope, so you can write things on it.
b. If the WeightBotchers scales show a 5% reduction in someone's mass, what's the angle of the slope? (Assume that the person has mass m, and that the gravitational field strength is \mathbf{g}.)

$$
\text { Weight }=m g \text {. }
$$

5% reduction means that normal force $=0.95 \mathrm{mg}$

Using triangle:

reduction means that the normal force is 95% of the person's actual weight.

Perpendicular
component is $F_{N}=?$ reading on scales $=$
0.95 mg

Parallel component is $F_{\text {net }}$ that causes acceleration down hill.
c. What is the person's acceleration down the slope?

Calculate net force then use $F_{\text {net }}=$ ma to get acceleration

Using triangle to work out net force (which is opp side)

$$
\begin{aligned}
& \sin (\theta)=\frac{0}{h}=\frac{F_{m t}}{m g} \\
& F_{n e t}=m g \sin (18.2) \\
& F_{n e t}=0.312 \mathrm{mg} \quad \begin{array}{l}
\text { 'm' is multiplying both sides } \\
\text { of the equation n so so }
\end{array} \\
& \text { da }=0.312 \mathrm{mg} \\
& \text { divides out and cancels. }
\end{aligned}
$$

The acceleration doesn't
depend on the person's mass.

Another fake busted!

There are two forces acting on you when you stand on the second WeightBotchers machine - your weight and the normal force from the surface.

Your weight vector points straight down, but the normal force points perpendicular to the surface.

You accelerate down the slope, parallel to the surface. This means that the net force acting on you must be parallel to the surface, because $\mathbf{F}_{\text {net }}=m \mathbf{a}$. And the perpendicular components of the forces must add to zero.

When you draw in the parallel and perpendicular components of your weight vector, you see that the parallel component of your weight provides the parallel net force.

The net perpendicular force on you is zero. Therefore, the normal force and the perpendicular component of your weight must add to zero. As the scales measure the normal force, and the normal force is only a component of your weight, the scales don't register your full weight. The reading on the scales is lower than it would be on a horizontal surface.

Question Clinic: The "Free body diagram" Question

Any time you have a problem that involves forces, always,

If you know the mass, you might be able to use it to work out the net force ($F=m a$) or the momentum ($p=m v$) later on.

This should immediately get you thinking about horizontal and vertical components.

This means that there is no net force acting on the balloon, causing it to accelerate.
 If there's no net force, then the weight and the buoyant force must be equal.
5. A hot air balloon, mass 3500 kg , travels horizontally at a constant speed of $2.0 \mathrm{~m} / \mathrm{s}$.
a. Draw a free body diagram for the balloon, clearly labelling all the forces acting on it.
b. If sandbags with a mass of 200 kg are dropped from tione basket, draw the new free body diagram for the balloon.
c. What is the acceleration of the balloon after the sandbags are removed?

There's now a net force, as the buoyant force that holds up the balloon is greater than the new weight. So you can use $F_{\text {net }}=$ ma to work out the acceleration.

This will be the same as your old one, but with the new weight.

Remember to use the new mass without the ballast!

This means that you should write down what your force vector arrows represent next to them.

This changes the weight of the balloon.

Remember - if the object is stationary or moving with a constant velocity, there's no net force acting on it - it's not accelerating. So all the forces you draw must add to zero when you line them up 'nose-to-tail'. This will help you not to forget forces that you should include on your free body diagram.

Question Clinic: The "Thing on a slope" Question

A simple free body diagram shouldn't contain components just the actual forces.

Work with components perpendicular to the slope.

This means that you're using the variables m, θ and 9 rather than numerical values, which tests your understanding of the physics more.

These are the values you know at the start of the problem.

5. A person, mass m, stands/on scales that accelerate down a slope. The slope makes an angle θ with the ground.

This means that there is a net force acting on the person.
a. Drawa free body diagram for the person, clearly labelling all the forces acting on them.
b. Calculate the normal force in terms of m, θ and \mathbf{g}, the gravitational field strength.

This gives you the direction of the net force - parallel to the slope.
c. What mass do the scales say the person is?
d. If the person accelerates do
e. If there was no slope and the person was just falling, what would the reading on the scales be?

Note when you're asked for a mass rather than a weight.

Draw a new free body diagram.
There's no normal force, so the scales will read zero.

Use $F=$ ma and components.

Free body diagram

The gravitational force exerted on an object by a much larger object, such as the earth. Weight = mg, where \mathbf{m} is the mass and \mathbf{g} is the gravitational field strength.

A diagram showing only one object, and all of the forces acting on it.

The contact force exerted by a surface on an object. This force is always perpendicular (or normal) to the surface

Your Physics Toolbox

You've got Chapter 11 under your belt and added some problem-solving concepts to your toolbox.

Free body diagram

For any problem that involves forces, you should always draw a free body diagram, giving the size and direction of every force acting on a single body.
Draw your force vector arrows pointing away from the object.

Newton's Ind law

A net force applied for a time always leads to the same change in momentum:

$$
F_{\text {net }} \Delta t=\Delta(m v)
$$

If the mass of an object is constant, this can simplify to:

$$
F_{\text {net }}=m a
$$

Newton's 3rd Law

 pairs of forcesNewton's 3rd Law pairs of forces exist where two objects interact.
Both forces in the pair must be of the same type (contact or non-contact).
Each force in the pair must act on a different object.
Each force in the pair will have the same size, but the forces will be in opposite directions.

Object on a slope

 If you have an object on a slope, the normal force and the perpendicular component of the weight are equal sizes.The net force and the parallel component of the weight are equal sizes.

Choosing component directions

If you have a problem where the net force is zero in one particular direction (e.g. perpendicular to a slope) then choose component vectors parallel and perpendicular to this direction to make your calculations easier.

12 using forces, momentum, friction and impulse

It's no good memorizing lots of theory if you can't apply it.

You already know about equations of motion, component vectors, momentum conservation, free body diagrams and Newton's Laws. In this chapter, you'll learn how to fit all of these things together and apply them to solve a much wider range of physics problems. Often, you'll spot when a problem is like something you've seen before. You'll also add more realism by learning to deal with friction - and will see why it's sometimes appropriate to act on impulse.

It's ... SimFootball!

You've been contacted by the SimFootball team, who need your help with some of the physics in their video game. If you can help them figure out why the characters in the game aren't behaving like they would in real life - you'll get an all expenses paid trip to the X-Force Games.!

Memo

From: SimFootball

Re: Physics in our new game

We saw you on FakeBusters the other night, and thought you might like to be a consultant on our latest game.

We already have the graphics in place, but need advice on the physics engine for many of the components of the game - passing, tackling, tire drag (in training mode) and kicking. You will work closely with one of our programming team.
If you can help us get this all together in time, we'll send you to the X-Force Games...all expenses paid.

Sharpen your pencil

The SimFootball programming team have come up with a list of things they need physics advice on for their game. Your first job is to outline the physics you think you'll need to use.

So start with a sketch of each item to reduce it to its 'bare bones' and see if it's like something you already know how to do. Label things like velocity, acceleration, force etc where appropriate. And give a brief outline of the kind of physics you might use to solve each problem.
a. Passing - Working out the path of a ball that has been thrown through the air at a known angle with a known initial velocity.
b. Tackling - Players with known masses each running with a certain velocity collide with each other and grab on.
d. Kicking - Moving foot kicks stationary ball with a force, and is in contact for a known period of time.
c. Tire drag - In training mode, a player with a rope around his waist runs, dragging a tire along the ground.

Solution

The SimFootball programming team have come up with a list of things they need physics advice on for their game. Your first job is to outline the physics you think you'll need to use.

So start with a sketch of each item to reduce it to its 'bare bones' and see if it's like something you already know how to do. Label things like velocity, acceleration, force etc where appropriate. And give a brief outline of the kind of physics you might use to solve each problem.
a. Passing - Working out the path of a ball that has been thrown through the air at a known angle with a known initial velocity.
This looks like a projectile fired through the air at an angle. Use equations of motion and treat horizontal and vertical
 components separately.
c. Tire drag - In training mode, a player with a rope around his waist runs, dragging a tire along the ground with a constant velocity.
The tire is being pulled at an angle, so you can maybe make a rightangled triangle and use component vectors of forces to work this out.

You don't know exactly how to do some of these problems yet, but don't worry - you've already got off to a great start!

> If you're given a story, start with a sketch to work out what physics the story involves. What's it LIKE?
b. Tackling - Players with known masses each running with a certain velocity collide with each other and grab on.
Players both have mass Before and velocity, so both have momentum before collision.

Momentum is conserved so it must be the same before and after.

$v=$?
d. Kicking - Moving foot kicks stationary ball with a force, and is in contact for a known period of time.

Foot and ball both have a mass and a velocity, and again momentum must be conserved.
 on foot

$$
t=\text { contact time }
$$

If two objects interact, look out for being able to use momentum conservation or a form of Newton's Ind Law (either $F=$ ma or $F \Delta t=\Delta p$) as both objects experience the same size of force.

We can already handle passing using

Jim: Yeah, but what about tackling? The players usually hit head on and grab on to each other. In the game we know their masses and velocities before the tackle. Ow!!! What are you doing?!
Joe: Just being a part of it! Looks like if I'm running faster when I tackle you, we move faster afterwards than when I run slowly.
Frank: And if your mass was larger, Jim would have gone flying!
Joe: The total momentum, mass \times velocity, will be the same before and after - right?

Jim: I'm glad we're back to math now! Yeah, the game would need to move the players with the correct velocity after the tackle. We know the mass and velocity of each player before the tackle, so using momentum conservation sounds about right.

Sharpen your pencil

Two football players hit each other head on. One has a mass of 95.0 kg and is running from left to right at $8.50 \mathrm{~m} / \mathrm{s}$. The other has a mass of 120.0 kg and is running from right to left at $3.80 \mathrm{~m} / \mathrm{s}$
If the players lock together in the tackle, what velocity do they move with in the split second after the tackle?
Hint: If the
players lock
together, they
move as one
mass after
the tackle

Sharpen your pencil
 Solution

Two football players hit each other head on. One has a mass of 95.0 kg and is running from left to right at $8.50 \mathrm{~m} / \mathrm{s}$. The other has a mass of 120.0 kg and is running from right to left at $3.80 \mathrm{~m} / \mathrm{s}$

If the players lock together in the tackle, what velocity do they move with in the split second after the tackle?
Before: $\quad m_{1}=95.0 \mathrm{~kg}$

$m_{2}=120.0 \mathrm{~kg}$

$$
v_{1}=8.5 \mathrm{~m} / \mathrm{s} \quad v_{2}=-3.8 \mathrm{~m} / \mathrm{s}
$$

$$
\text { After: } \quad m_{3}=95.0+120.0=215.0 \mathrm{~kg}
$$

$$
v_{3}=?
$$

Left to right is positive.
Momentum is a VECTOR so you need to choose which DIRECTION to define as positive.

Momentum is conserved in a collision

Momentum is always conserved in an interaction between two or more objects. So when the two players collide in the tackle, the total momentum must be the same afterwards as it was before the collision.

This happens because each player experiences the same size of force when they collide, but in opposite directions - a Newton's Third Law pair of forces. The same size of force always causes the same change in momentum.
So the first object has its momentum changed in the direction of the force acting on it - and the second object has its momentum changed in the direction of the force acting on it.
But the forces are equal sizes and in opposite directions. So the changes in momentum are equal sizes and in opposite directions. This means that the total momentum is the same both before and after the collision. The changes in momentum make no difference to the total when you add them together.

Use momentum conservation to work out v_{3} :
total momentum before $=$ total momentum after.

It's safest to rearrange your equation before you put the values in.

They go from left to right at $1.63 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})$.

$$
>m_{1} v_{1}+m_{2} v_{2}=m_{3} v_{3}
$$

$$
t_{0} \longrightarrow v_{3}=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{3}}
$$

$$
\begin{aligned}
& v_{3}=\frac{95.0 \times 8.50-120.0 \times 3.80}{215.0} \\
& v_{3}=1.63 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

\qquad
Before

After

Players form one mass after collision.
When two objects collide, think about what happens. Do they become one object?

there are no
 Dumb Questions

Q: How do you know that the two masses that exist before the collision have turned into one mass afterwards?

A: You'll often do problems where two masses stick together after colliding. This means that they no longer move as two separate masses, but as one mass with a single velocity. Read the question carefully!

Q:Are there any buzzwords that indicate that the objects stick together?

A:: Sometimes the term "inelastic" is used to indicate a situation where two objects collide without bouncing (in an "elastic" way).

Q:Is momentum always conserved? Or does that only happen when the objects stick together?

A:: Momentum is always conserved in any interaction between two objects, whether they stick together or bounce off of each other. This happens because each object experiences an equal-sized forces in opposite directions as a result of the collision. The same size of force always leads to the same change in momentum.

So if one object's momentum changes by $+10 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$ and the other object's by $-10 \mathrm{~kg} . \mathrm{m} / \mathrm{s}$, the total momentum is still the same. The +10 and -10 add to zero when you add the "after" momentums together.

Q: So that happens because of a
Newton's Third Law pair of forces?
A: spot on! Newton's 3rd Law and momentum conservation are two sides of the same coin.

Q: what if the football player had a collision with an advertising billboard that stopped him completely? Where's the momentum conservation there?

A: The advertising billboard is attached to the Earth, which has a huge mass compared to the player. As momentum is mass \times velocity, the Earth's huge mass means that the change in its velocity is far too small for you to notice.

But the collision might be at an angle

The SimFootball team are really happy with what you told them about tackling, and write it into the game!

But they soon realize that the problem's more involved than they first thought. The players don't always collide head on - sometimes they hit each other at an angle. And they don't know how to deal with that.

But sometimes they run in

you are here
477
Download at WoweBook.Com

> When you draw a sketch, make sure you think about angles.

> You can't use what you know of Pythagoras, sine, cosine or tangent unless your triangle is right-angled.

Jim: Well, isn't momentum still conserved? We can figure out the total momentum before the collision just like we did before. This'll be the the same as the size and direction of the players' total momentum after the tackle, when they stick together.

Joe: We can do that in principle ... but in practice it's going to be difficult dealing with the momentum vectors if we add them together to work out the total momentum at the start. Look:

Frank: But what's the big deal? The vectors make a triangle - and we can deal with triangles!

Jim: Correction ... we can deal with right-angled triangles. But that triangle sure ain't right-angled.

Frank: Oh yeah. When the players hit head on, we didn't need to think about angles, because all the action was taking place along a straight line that ran from left to right.

Jim: But can't we just use Pythagoras etc?
Joe: Pythagoras only works for right-angled triangles. And what we know about sine, cosine and tangent only works for right-angled triangles. I guess we could try to work out something that works for other triangles, but that sounds waaay hard.

Frank: Hmmm, a triangle with no right-angles like the one we're stuck with sure is awkward.

Jim: I wonder if we could somehow flip things around so that there are some right-angled triangles ..

A triangle with no right angles is awkward

The main problem with this collision is that the players are running in at different angles. You can add together the players' momentum vectors to get the total momentum before the collision by lining them up nose-to-tail, like we've done here.

But the triangle formed by the players' momentum vectors isn't right-angled. This makes it difficult for you to calculate the total momentum. Pythagoras, sine, cosine and tangent only work with a right-angled triangle. A triangle with no right angles is awkward!

Use component vectors to create some right-angled triangles

1. You need to add together vectors at an angle.

If your problem has two dimensions, think component vectors.

You can redraw any vector as two component vectors at right-angles to each other. This is especially useful if you have to add two vectors together that aren't parallel or perpendicular to each other.
2. Turn each vector into components at right angles.

We've used the subscript ' I / r ' to mean 'left-right component'.

We've used the subscript ' u / d ' to mean 'up-down component'.

Sharpen your pencil

Two players in the "SimFootball" game collide in a tackle and grab on to each other. Their masses and velocity vectors are shown here:
a. Calculate the size of the momentum vector for each player.

b. Draw a sketch to show the left/right and up/down components of each player's momentum, and calculate the sizes of these components.
c. Calculate the size and direction of the total momentum vector using your results from part b.
d. What velocity do the players move with after the tackle?

Sharpen your pencil
 Solution

Two players in the "SimFootball" game collide in a tackle and grab on to each other. Their masses and velocity vectors are shown here:
$m_{1}=110 \mathrm{~kg}$
a. Calculate the size of the momentum vector for each player.

$$
\begin{aligned}
& p_{1}=m_{1} v_{1}=110 \times 8.86=975 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \\
& p_{2}=m_{2} v_{2}=125 \times 2.92=365 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

-29-----
29.2°
b. Draw a sketch to show the left/right and up/down components of each player's momentum, and calculate the sizes of these components.

$$
\begin{aligned}
\cos (29.2) & =\frac{a}{h}=\frac{P_{11 / r}}{975} \\
P_{1 / r} & =975 \cos (29.2) \\
P_{1 / r r} & =851 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \text { right }
\end{aligned}
$$

$$
\sin (29.2)=\frac{\circ}{h}=\frac{P_{1 / d}}{975}
$$

$$
P_{l w / d}=975 \sin (29.2)
$$

$$
P_{l \mathrm{w} / \mathrm{d}}=476 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \text { down }
$$

$$
\begin{aligned}
\cos (22.4) & =\frac{a}{h}=\frac{P_{2 w / d}}{365} \\
P_{21 / r} & =365 \cos (22.4) \\
P_{21 / r} & =337 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \text { left }
\end{aligned}
$$

$$
\begin{aligned}
\sin (22.4) & =\frac{0}{h}=\frac{P_{2 w / d}}{365} \\
P_{2 w / d} & =365 \sin (22.4) \\
P_{2 w / d} & =139 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \text { down }
\end{aligned}
$$

c. Calculate the size and direction of the total momentum vector using your results from part b.

Left/ right components: $851-337=514 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ right
Up / down components: $476+139=615 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}$ down
Size: By Pythagoras, $p^{2}=p_{1 / r}^{2}+p_{w / d}{ }^{2}=514^{2}+615^{2}$

$$
p=\sqrt{514^{2}+615^{2}}=802 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
$$

Direction: Given angles all measured from the horizontal, so do this too.

$$
\tan (\theta)=\frac{0}{a} \Rightarrow \theta=\tan ^{-1}\left(\frac{615}{514}\right)=50.1^{\circ}(3 \mathrm{sd}) \text { from the horizontal, left to right. }
$$

d. What velocity do the players move with after the tackle?

$$
\begin{aligned}
& m=\text { total mass }=110+125=235 \mathrm{~kg} \\
& p=m v \Rightarrow v=\frac{p}{m}=\frac{802}{235}=3.41 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \text { at } 50.1^{\circ}(3 \mathrm{sd}) \text { from the horizontal, left to right. }
\end{aligned}
$$

there are no Dumb Questions

Q:That was a lot of math to go through with all the component vectors!!

A:It wasn't any more difficult than what you've done previously. It's just that you had to calculate a number of sides and angles! But as long as you manage to organize your work so that you don't get mixed up, you're fine. Now you can handle component vectors and rightangled triangles, you have superpowers that let you deal with two-dimensional situations.
Q: - How often will I need to do a problem involving momentum conservation like this one?
A: : You may not come across many problems exactly like this. But the general skill of being able to turn vectors at awkward angles into component vectors so you can add them together is one you can use again and again with any vectors.

Q:- I was just thinking ... what happens if the players bounce off each other after the tackle? Then I'd have two momentum vectors to deal with after the collision!

A:: Great spot! You're right - this would be a more difficult problem, and you'll need to learn about energy before you can solve it. You'll come back to a similar scenario in a later chapter, so don't worry about it for now.

The programmer includes 20 momentum conservation ...

The SimFootball programmer gets to work, and quickly codes up what you've learned about 2D collisions using momentum conservation. Now the players move realistically for the split second after the tackle ...

but the players keep on sliding for ever!

vectors at different angles, resolve the vectors into components at right-angles, then add together the components.
To add together two

What needs to be included in the game to stop the players just sliding on for ever?

In real life, the force of friction is present

Abstract

Newton's First Law says that an object will continue on at the same velocity unless acted on by a net force. At the moment, the SimFootball game isn't finished, and the only way sliding players can be stopped is if they crash into the advertising billboards or a goalpost. So at the moment, the players just continue along at the same velocity after the tackle until they hit something.

In the real world, moving objects slow down and eventually stop because of the force of friction (symbol $\mathbf{F}_{\text {fric }}$). Friction only comes about when two surfaces are in contact with each other, and the frictional force always acts to oppose motion. If an object is sliding along a surface, the frictional force always acts parallel to the surface.

> Friction always acts to 0PPOSE motion. If an object is sliding along a surface, the frictional force on it acts PARALLEL to the surface.

If the object is stationary, its velocity is constant (zero) therefore there is no net horizontal force. If no other horizontal forces are present, and therefore no friction if there are no other horizontal forces.

If you start to gently push a stationary object, it won't move, as friction always opposes motion. But if you keep on pushing harder, you'll eventually manage to exert a larger force than the frictional force, and the object will move.

No-one knows for sure exactly how friction works. It's definitely a contact-dependent force, which you see when you try to slide one surface over another. Interactions between the surfaces act to oppose the motion until, eventually, the two surfaces end up at rest. But the exact nature of these interactions hasn't yet been pinned down.

Frank: I guess we'd better have a go at being a sliding object, to see how each of these variables might affect the frictional force.

BE the sliding object

Your job is to be a sliding object. We've drawn an experiment here that you can do yourself - or you can put yourself in the place of the sliding object / player. Write down the effect you think each factor will have on the size of the frictional force and give reasons for your answers.

a. Materials block and surface are made from.
b. Mass / weight of block.
\qquad
\qquad
c. Angle / slope of surface.
\qquad
\qquad
d. Velocity of block.

BE the sliding eloject - SoLUTTON

Your job is to be a sliding object. We've drawn an experiment here that you can do yourself - or you can put yourself in
the place of the sliding object /
player. Write down the effect you think each factor will have on the size of the frictional force and give reasons for your answers.

a. Materials block and surface are made from. Some surfaces will have more friction than ... others. Players slide further on grass than on astroturf so frictional force is smaller.
b. Mass / weight of block.

The heavier something is, the harder it is to slide, as it's "pushed into" the surface So a... larger mass leads to a larger frietional force.
c. Angle / slope of surface.

The larger the angle, the smaller the frictional force, because the block in't "pushed in to" the surface so much.
d. Velocity of block.

It's difficult to tell what effect the velocity has on the friction without making more
accurate measurements
there are no

Dumb Questions

Q:- So the amount of friction depends on how rough the surfaces are, right? Like, sandpaper on sandpaper creates a lot of friction, but there's less friction with smooth surfaces?
A: - Not quite. As anyone who's ever worn through their bicycle brakes may have spotted, there's actually more friction with two perfectly smooth surfaces (steel on steel) than with sandpaper, or rubber brake blocks on steel! Friction depends on the type of surface, but not necessarily on roughness.

Q:But everyone knows that when you oil something (i.e. make its surface more smooth) then there's less friction.

A:: Friction occurs when two surfaces are in contact with each other. Oiling introduces a layer in between the two surfaces, which increases the distance between them. Oiling doesn't change the smoothness of the surfaces themselves.

Friction is a contactdependent force.

Q: What about something moving through the air? It's not close to any surfaces, but it still slows down.
A: : That's mainly air resistance, which isn't quite the same as friction. The force of friction experienced by an object sliding across a surface actually doesn't depend on its velocity. But the resistive force that something moving through the air experiences increases when its velocity increases, as the faster it goes, the more air molecules it has to 'push aside' every second to make progress.

Friction depends on the types of surfaces that are interacting

The frictional force that a moving object (such as two football players sliding after a tackle) experiences depends on the nature of the two surfaces that are interacting. In physics, this is expressed by the coefficient of friction, μ. The greater the value of μ, the greater the amount of friction. Values of μ can range from around 0.05 for two teflon surfaces to around 1.7 for a rubber tire on a road.

For the football pitch surfaces, $\mu=0.8$ for astro and $\mu=0.5$ for grass. So you can see that the frictional force as the players slide along astroturf will be higher than the frictional force from grass.

Friction depends on the normal force

The frictional force that a moving object experiences depends on how much the object is "pushed into" the surface. This is another way of saying that friction depends on the normal force that a surface exerts on the object. The greater the normal force, the greater the amount of friction.

The equation for the size of the frictional force experienced by an

This is just an equation for the size of the frictional force. $\mathbf{F}_{\text {fric }}$ will always oppose the direction of motion (or attempted motion) parallel to the surface. So to get the direction of $\mathbf{F}_{\text {firi }}$, you need to look at the velocity of the object (for kinetic friction) or the parallel component of a pushing force (for static friction).

When you know the direction of $\mathbf{F}_{\text {fiic }}$, you can use $\mathbf{F}_{\text {net }}=m \mathbf{a}$ to calculate the players' acceleration. You can then use the acceleration in equations of motion to see how the players move.
μ is the Greek letter 'mu' and is pronounced 'mew'.
The larger the coefficient of friction, the larger the frictional force.

The larger the normal force, the larger the frictional force.

This applies to size.
The normal force is perpendicular and the frictional force is parallel.

Be careful when you calculate the normal force

The normal force is always perpendicular to a surface. It should be the last force you add to a free body diagram, as it is the force exerted by the surface on an object so as to make the net perpendicular force equal to zero.

If the net perpendicular force wasn't zero, the object would either crash through the surface, burrow into the surface or bounce off the surface.

If surface is horizontal and there are no other forces acting on the object then the normal force is exactly the same as the object's weight.

If the surface is at an angle, the normal force is also at an angle, as it is always perpendicular.

If there are other forces acting on the object (for example, a player may be pushed into the ground by another player), then you need to ensure that you draw on the normal force so as to make the net perpendicular force equal to zero.

If the object is on a slope then you'll have to work out the perpendicular components of all the forces acting on the object. Usually, this will just involve the object's weight, but it can sometimes involve extra forces if something else is pushing or pulling the object.

If there are other forces with perpendicular components in addition to the weight, you'll need to calculate the size of the normal force that makes the net perpendicular force equal to zero.

Frictional force doesn't depend on surface area!

Since friction is a force that depends on contact between two surfaces, it seems logical to assume that you will have a greater value of friction when the surface area is greater.

But think of it this way instead. If you have a flat-sided brick, there are three different ways you can put it on a flat surface. The normal force is always the same each time, since the weight of the brick doesn't change. So if you maximize the contact surface area,
 surface as much as one on its end - in the same way as flat-soled shoes don't 'dig in' to a surface as much as high heels do.
It turns out that these two effects - increasing the surface area and reducing the pressure - exactly cancel each other out when it comes to their effect on the frictional force experienced by the brick. The frictional force depends only on the coefficient of friction and the normal force, i.e. $\mathbf{F}_{\text {firic }}=\mu \mathbf{F}_{\mathrm{N}}$

The frictional force ONLY depends on the coefficient of friction and the normal force.

You're ready to use friction in the game!

You should start any problem that involves forces with a free body diagram. This is even more important if friction is involved. Remember that friction always acts to oppose motion, so you need to think about the object's velocity to get the direction of the frictional force.

Think about which direction the object is accelerating in (if any). If it isn't accelerating perpendicular to the surface, then all of the perpendicular force components will cancel each other out so that there is no net force in that direction. The value of the normal force will be whatever makes the net perpendicular force equal to zero.

> If a problem involves forces, start by drawing a free body diagram.

After a tackle, two players with a combined mass of 215 kg slide horizontally along the ground with an initial velocity of $3.70 \mathrm{~m} / \mathrm{s}$.

How long does it take for them to come to a complete stop on a. Astroturf ($\mu=0.80$) and b. grass $(\mu=0.50)$?

Hint: Use the normal force to calculate the frictional force. Work out the acceleration that the frictional force produces using $F_{n e t}=m a$. Then use the acceleration and equations of motion to calculate the stopping time.

Hint: Draw a free body diagram to get the forces right. Draw a separate sketch to use with equations of motion.
you are here
491

Sharpen your pencil

Solution
After a tackle, two players with a combined mass of 215 kg slide horizontally along the ground with an initial velocity of $3.70 \mathrm{~m} / \mathrm{s}$.

How long does it take for them to come to a complete stop on a. Astroturf ($\mu=0.80$) and b. grass ($\mu=0.50$) ?
Free body diagram

$$
\mu F_{N}=m a
$$

Equations of motion sketch
Want to work out time. Use $F_{\text {net }}=$ ma to work out acceleration then equations of motion to get t.

$$
\begin{aligned}
& F_{\text {net }}=m a \\
& F_{\text {net }}=F_{\text {frit }}=\mu F_{N} \quad \begin{array}{l}
\text { The net force is } \\
\text { the frictional force. }
\end{array}
\end{aligned}
$$

$$
a=\frac{F_{n e t}}{m}=\frac{\mu F_{N}}{m}=\frac{\mu \mu n g}{m r}=\mu g
$$

$$
v=v_{0}+a t \Rightarrow t=\frac{v-v_{0}}{a}=\frac{v-v_{0}}{\mu g}
$$

$a=\mu g \underset{\sim}{\longleftrightarrow}=215 \mathrm{~kg} \xrightarrow[v]{v_{0}=0 \mathrm{~m} / \mathrm{s}}$
Right to left is positive.
 Choose a positive direction and stick with it.

Including friction stops the players from sliding forever!

You explain to the programmer that the players sliding along a surface will experience a frictional force that opposes their current velocity, with size $\mathbf{F}_{\text {fric }}=\mu \mathbf{F}_{\mathrm{N}}$.
When he includes this in the game, the players stop sliding endlessly, and come to a stop like you'd expect them to in real life. Which is great!

This is waaay cool! X-Force Games, here we come - we're getting there...
a. For astro: $t=\frac{v-v}{\mu g} 0=\frac{0-(-3.70)}{0.80 \times 9.8}=0.47 \mathrm{~s}(2 \mathrm{sd})$
b. For grass: $t=\frac{v-v}{\mu g} 0=\frac{0-(-3.70)}{0.50 \times 9.8}=0.76 \mathrm{~s}(2 \mathrm{sd})$

The sliding players are fine - but the tire drag is causing problems

Soon, the SimFootball team have another problem that involves friction. In training mode, the players can run dragging a tire behind them.

Tire is dragged
Rope is tied
round the
player's waist

The programmer's tried working out the weight of the tire and making the normal force the same size as the tire's weight to calculate the friction. But the computer-generated players aren't behaving the way the programmer expects them to.

The frictional force that the game calculates appears to be larger than the frictional force actually is is in real life.

What could be behind the game calculating too high a value for the friction?

Jim: Do we have the right value for μ, the coefficient of friction? And is the field totally flat?

Joe: Yeah the game's using flat astroturf, and the experiment involving the real player was done on astroturf too, with no slope.

Frank: I guess we'd better do a sketch - we might have some more ideas about what's going on if we can actually see this.

Jim: Ooh, the rope's tied to the player's waist, isn't it?
Joe: Yeah, the force that the player exerts on the tire via the rope acts at an angle.

Frank: Will that make the normal force different somehow?
Jim: I think so - the player's kind-of pulling the tire up as well as along. Look at the components of the pulling force:

Joe: The rope's supporting the tire vertically as well as pulling it horizontally. The normal force will be smaller than the tire's weight.

Frank: So how do we work with that?
Jim: Well, the tire's weight vector points downwards. The vertical component of the force from the rope points upwards. And the normal force points upwards. The tire isn't rising or burrowing down - there's no net perpendicular force. So the tire's weight, the vertical force from the rope and the normal force must add to zero.

Joe: And the tire's moving horizontally with a constant velocity, so the frictional force and the horizontal component of the force from the rope must add to zero, so that there's zero net horizontal force. Or else the tire would accelerate.

Sharpen your pencil

A football player has one end of a rope tied around his waist; the other end is attached to a tire. The programmer has done a brief experiment involving a real player and tire, and wants to calculate the force that the player exerts on the tire via the rope so he can use it in the game.
a. Draw a free body diagram of the tire when it is dragged along the ground with a constant velocity. Use \mathbf{F}_{r} to represent the force that the player exerts on the tire via the rope.
Don't put on
any values yet,
just draw the
force vector
arrows and
say what they
represent.
c. Use the vertical components to work out an equation for the normal force, \mathbf{F}_{N}.
d. Use the fact that the frictional force, $\mathbf{F}_{\text {fric }}=\mu \mathbf{F}_{\mathrm{N}}$ to arrive at an equation that only involves the components of $\mathbf{F}_{\text {fric }}$, the mass of the tire, the coefficient of friction and \mathbf{g}, the gravitational field strength.
b. Draw a new sketch showing the horizontal and vertical components of all the forces acting on the tire.
e. The tire has a mass of 10.0 kg , the rope is 2.00 m long and the player's belt is 120 cm above the ground, which is astro with $\mu=0.80$. Use your equation from part d to work out $\mathbf{F}_{r^{\prime}}$ the force that the player exerts on the tire via the rope.

Sharpen your pencil
 Solution

A football player has one end of a rope tied around his waist; the other end is attached to a tire. the programmer has done a brief experiment involving a real player and tire, and wants to calculate the force that the player exerts on the tire via the rope so he can use it in the game.
a. Draw a free body diagram of the tire when it is dragged along the ground with a constant velocity. Use \mathbf{F}_{r} to represent the force that the player exerts on the tire via the rope.

c. Use the vertical components to work out an equation for the normal force, \mathbf{F}_{N}.

Up is the positive direction.

$$
\begin{gathered}
\text { No net force so } F_{N}+F_{r v}-m g=0 \\
F_{N}=m g-F_{r v}
\end{gathered}
$$

d. Use the fact that the frictional force, $\mathbf{F}_{\text {fri }}=\mu \mathbf{F}_{\mathrm{N}}$ to arrive at an equation that only involves the components of $\mathbf{F}_{\text {fri }}$, the mass of the tire, the coefficient of friction and \mathbf{g}, the gravitational field strength.

There's zero net
Right is the positive direction. horizontal force.
Constant velocity so $F_{r h}+\left(-F_{\text {fric }}\right)=0$

$$
F_{f r i c}=F_{r h}
$$

$$
\begin{aligned}
\text { But also } F_{\text {frit }} & =\mu F_{N}=\mu\left(m g-F_{w}\right) \\
& \Rightarrow \mu\left(m g-F_{r}\right)=F_{r b}
\end{aligned}
$$

b. Draw a new sketch showing the horizontal and vertical components of all the forces acting on the tire.

Rope vertical

Normal component, F

e. The tire has a mass of 10.0 kg , the rope is 2.0 m long and the player's belt is 120 cm above the ground, which is astro with $\mu=0.80$. Use your equation from part d to work out $\mathbf{F}_{r^{\prime}}$ the force that the player exerts on the tire via the rope.

Rope distance triangle and force triangle are similar triangles.

x 1.2 m

By Pythagoras, $x^{2}+1.2^{2}=2.0^{2} \Rightarrow x=1.6 \mathrm{~m}$
Similar $\frac{F_{m}}{F_{r}}=\frac{1.2}{2.0} \Rightarrow F_{r v}=0.60 F_{r}$
$\frac{F_{r h}}{F_{r}}=\frac{1.6}{2.0} \Rightarrow F_{r h}=0.80 F_{r}$
Equation:

$$
\mu\left(m g-F_{m}\right)=F_{r m}
$$

$$
\Rightarrow \mu\left(m g-0.60 F_{r}\right)=0.80 F_{r}
$$

$$
\Rightarrow \mu m g-0.60 \mu F_{r}=0.80 F_{r}
$$

$$
\Rightarrow \mu m g=F_{r}\left(0.60_{\mu}+0.80\right)
$$

$$
\Rightarrow \quad F_{r}=\frac{\mu \mathrm{mg}}{0.60 \mu+0.80}=\frac{0.80 \times 10 \times 9.8}{(0.60 \times 0.80)+0.80}
$$

$$
F_{r}=61 N(2 \mathrm{sd})
$$

Using components for the tire drag works!

Now that the programmer knows how to calculate the normal force, there's no stopping him, and the parts of the game that are affected by friction are soon in place.

And as well as sliding players and dragging tires, the game can even deal with dragging tackles!

there are no

Dumb Questions

Q: What do I need to know in order to calculate the force of friction?

A : The equation for the size of the frictional force is $F_{\text {fric }}=\mu \mathrm{F}_{\mathrm{N}}$. So you need to know the coefficient of friction for the surfaces you have, and the normal force.

Q: How do I find out what the coefficient of friction is?

A: You can look it up in a book or on the web. And if you're taking a test, μ will either be something you're given or something you're asked to work out from the values of various forces.

Q: How do you get the normal force? A: The object isn't accelerating into the surface, so the perpendicular components of the forces acting on it must add to zero. The normal force will have the value that makes this possible

$Q:$I've noticed that an object travelling at a constant velocity has come up more than once. Is there a reason for that, and what's the best way of dealing with it?
A :
: There are many situations where you'd want something to travel with a constant velocity. A constant velocity means that there's no net force on an object (Newton's 1st Law) - you'll be fine if you remember this.

Q: what if there is a frictional force acting on an object? How do you get a situation where there is no net force? A: Either by pushing or pulling the object with a force equal to the frictional force, or by tipping the surface to a greater angle, so that the normal force (and therefore the frictional force) is smaller, and the component of the object's weight accelerating it down the slope is greater.

$Q:$Does the tire experience the same frictional force when it rolls?

A:: No. It experiences a relatively small amount of rolling friction, due to the part of the tire in contact with the surface deforming.

Frietion Exposed

This week's interview:

Getting to grips with friction.

HeadFirst: So, friction, you're a bit of an enigma, aren't you? Like, no-one really knows where you come from. What's your take on that?

Friction: Yeah, it's true that people don't really know why I'm around. But the important thing is that I'm here!

HeadFirst: But you're a bit of a stick-in-the-mud, aren't you? You always oppose everything!

Friction: It's true that I always oppose motion, but it's not something you should take personally.
HeadFirst: And you're a little without direction, aren't you? I mean, you always depend on what everyone else is doing!

Friction: OK, well I guess that's true. Because I'm a force that always opposes motion, I don't actually appear until something actually moves, or tries to move. But as long as you're watching closely, that shouldn't be a problem.

HeadFirst: So are you in surfaces all the time, just hiding and waiting to come out?

Friction: Not at all. I'm just not there unless something's moving or trying to move.

HeadFirst: You've used that phrase "moving or trying to move" a couple of times now. What do you mean by it?
Friction: Well, I come in a couple of different varieties. If you're already moving, the force that opposes this motion is called kinetic friction.
HeadFirst: Why is it called that?
Friction: Kinetic means "moving"!
HeadFirst: And what if an object's stationary then someone comes along and tries to move it?

Friction: Then there's static friction. I guess the two surfaces have longer to interact with each other because they're stationary, and so the frictional force you have to overcome is greater.
HeadFirst: But kinetic friction doesn't depend on velocity, right?
Friction: Right. That's why having a mental picture of "bonds forming and breaking" or something like that can be misleading
HeadFirst: So what's this about you and the normal force?

Friction: I was wondering when that would come up! I can only oppose motion if two surfaces are actually touching. And the more they're "pushed together" the larger the frictional force between them. The normal force is a measure of how hard the two surfaces are being "pushed together."

HeadFirst: And how might the normal force vary?
Friction: If the surface is at an angle, and there are no other forces present, then the normal force will be less than the weight of the object.

HeadFirst: Is it only the angle of the surface that affects the normal force?

Friction: No - if there are extra forces acting on the object as well as its weight and the normal force, then the perpendicular components all have to add to zero.

HeadFirst: Why is that?
Friction: If the object isn't burrowing into or bouncing off the surface, there's no net perpendicular force. So the perpendicular components of the forces acting on the object have to add to zero. The normal force is whatever it needs to be for that to be true.

Question Clinic: The "Friction" Question

Sometimes, you will be presented with a problem where

The normal force acts perpendicular to the surface - so you'll need to turn any vector that's not already perpendicular or parallel to the surface into components.

If the overall velocity is constant (or zero), this means that there is no net force acting on the object.

Friction always opposes motion, so the frictional force will be in the opposite direction from the velocity.
2. A tire attached to a rope is dragged along the ground by a player. with a constant velocity. The tire has a mass of 10 kg , the rope is 2.0 m long and the player's belt is 120 cm above the ground, which is Astroturf with $\mu=0.8$
a. Draw a free body diagram for the tire.
b. Draw in the components paralle earid perpendicular to the ground for any forces that aren't entirely parallel or perpendicular.
c. Use the perpendicular components to work out the normal force and hence the frictional force in terms of F, the force the player exerts on the tire via the rope.
d. Use the parallel components to work out a value for F.

As the normal force depends on all of the other force components perpendicular to the surface (as it needs to balance them all so that the net force in the direction is zero), it should be the last thing you calculate.

If the velocity in a particular direction is constant (or zero) then there is no net force in that direction, i.e. all the components must add up to zero.

An important thing to remember when doing problems that involve forces is that 'constant velocity' is shorthand for 'no net force'. Usually, this means that the frictional force will have the same size as the component of the force that's causing the object to move.

How does kicking a football work?

So the game's nearly complete ... but the SimFootball team want to make kicking the football as realistic as possible. They've got their hands on some freeze frame footage - and have worked out the ball's velocity as it heads for goal. But they need you to work out the average force of the kick so they can program it in
But how are you going to do that when you don't know the ball's acceleration, can't use $\mathbf{F}_{\text {net }}=m \mathbf{a}$?

The frames are 2.5
milliseconds apart.

First contact is here.

Last contact is here.

What might you be able to do with the images to work out the average force that the ball experiences when the player kicks it?

Earlier on, you rewrote Newton's Second Law, having originally worked it out from momentum conservation.

You can rewrite Newton's Second Law as F
Newton's Second Law says that if you apply a net force to an object for a periods shan ge so force is rate of change of momentum:

$$
\mathrm{F}=\frac{\Delta(\mathrm{mv})}{\Delta \mathrm{t}} \quad \begin{aligned}
& \text { Rate of change } \\
& \text { of momentum }
\end{aligned}
$$

Usually the mass of an object doesn't change during the time that the force Usually the mass of ans that m is constant, so you can rewrite the equation is app
as:

But you already know that $\frac{\Delta y}{\Delta t}$ the rate of change of velocity - ie.
acceleration.
So you can rewrite your equation as:

Newton's Second Law
 in its purest form is:

$$
F_{\text {net }}=\frac{\Delta p}{\Delta t}
$$

Well, that's easy. We
just use Newton's Second Law: $\mathrm{F}_{\text {net }}=$ ma. We know there must be a net force on the football, because in one frame it's sitting still and in the next it's moving!

Jim: But we don't know the football's acceleration - we only know the velocity that it takes off with.

Frank: Hmm, good point.
Jim: Can we somehow use the freeze frame footage to work out the acceleration?

Joe: I think that's gonna be difficult. The ball deforms when it's kicked, then expands to its normal shape again. Which part of the ball would we use to work out the acceleration, when different parts are moving in different ways?!
Frank: But we can use the freeze frames to work out the time that the foot's in contact with the ball for. It looks like it's around 10 milliseconds... if we can use the time, it might help us somehow.
Joe: Oh ... hang on! Newton's second Law isn't actually $\mathbf{F}_{\text {net }}=m \mathbf{a}$, is it? In its purest form, it actually says that when you apply a force for a period of time, then it causes a change in momentum.

Jim: So you're saying that we can use $\mathbf{F}_{\text {net }} \Delta t=\Delta \mathbf{p}$ (where $\left.\mathbf{p}=m \mathbf{v}\right)$? That's cool: momentum is mass \times velocity, and we know what both of these are for the football!.

Frank: And we can get the time of contact from the freeze frame! That's the time that the force acts for, isn't it? 10 milliseconds?

Jim: Yeah, that sounds good. Though the force doesn't look like it'll be the same all the time. I'm sure the middle of the kick exerts more force than the start or end of it ...

Joe: But we've been asked to find the average force. When we were finding average speeds it was only the overall change in position that counted. So with the football, we can use the overall change in momentum to work out the average force.

Frank: So we are using Newton's Second Law like I suggested all along - but just a different form of it.
Jim: Yeah. Come on - let's do it!

$\mathrm{F} \Delta \boldsymbol{t}$ is called impulse

You can work out the force of the kick using a slightly different form of Newton's Second Law, $\mathbf{F} \Delta t=\Delta \mathbf{p}$. The quantity $\mathbf{F} \Delta t$ is also called impulse, and the equation says that impulse is equal to the change in something's momentum.

If you have a problem where your first instinct is to use $\mathbf{F}_{\text {net }}=m \mathbf{a}$ but you don't know the acceleration, look to see if you know the mass and velocity at the start and at the end.
If you do, you can work out the change in momentum, which is equal to the impulse, and then get the force from that.

Foot is in contact with ball for time Δt during which it exerts force F on it.

The total momentum of \triangle
So, run it past me again - what are the differences between acceleration, force, momentum and impulse? They all seem kinda similar ...
everything taking part in
an interaction is conserved.

Momentum $=$ mass x velocity Csymbol: p
$\widehat{V}^{\text {Symbol: a }}$
The acceleration is the rate of change of an object's velocity.
These are related by
the equation $F_{\text {net }}=$ ma

If you apply a force for a short time, you get a smaller change in momentum than if you apply it for a long time.

The force is the rate of change of an object's momentum.

The impulse is the actual change
 in an object's momentum.
Some people give impulse the symbol J, many others don't bother with a symbol.
Δp also happens to be called impulse. And you can write down the equation $F \Delta t=\Delta p$
a. The programmer wants to know the average force of the kick. The football has a mass of 400 grams and from the freeze frames, you can tell that the foot and ball are in contact for 10 ms (milliseconds). If the ball leaves the boot at an angle of 45° and travels 60 m , work out the force of the kick.

Hint: 45° is when the horizontal and vertical components of the ball's velocity are equal.
Hint: Use equations of motion to calculate the initial velocity. Look back at pages $\$ \$-\$ \$$ of chapter 10 if you get stuck, as the problem there is very similar.

Hint: Once you know the initial velocity, you can use $\mathbf{F} \Delta t=\Delta \mathbf{p}$. (Remember that $\mathbf{p}=m \mathrm{v}$)
b. Experiencing a large net contact force hurts! Explain, using impulse, why football players wear padding.

Sharpen your pencil
 Solution

a. The programmer wants to know the average force of the kick. The football has a mass of 400 grams and from the freeze frames, you can tell that the foot and ball are in contact for 10 ms (milliseconds). If the ball leaves the boot at an angle of 45° and travels 60 m , work out the force of the kick.

Hint: 45° is when the horizontal and vertical components of the ball's velocity are equal.
Hint: Use equations of motion to calculate the initial velocity. Look back at pages \$\$-\$\$ of chapter 10 if you get stuck, as the problem there is very similar.
Hint: Once you know the initial velocity, you can use $\mathbf{F} \Delta t=\Delta \mathbf{p}$. (Remember that $\mathbf{p}=m \mathrm{v}$)
Use $F \Delta t=\Delta_{m v}$ to work out the force. So work out the initial velocity, v, from 60 m range. 45° angle, so $v_{o h}=v_{o v}$ Pythagoras: $v_{0}{ }^{2}=v_{o h}{ }^{2}+v_{o v}{ }^{2}$

$$
\Rightarrow v_{0}^{2}=2 v_{o v}{ }^{2}
$$

$$
\begin{array}{ll}
0 \\
v_{0}=\sqrt{2} v_{o v} & \begin{array}{c}
\text { Symmetry: Replace } v_{j} \text {, with } \\
-v
\end{array} \text { in every equation you us }
\end{array}
$$

-v on in every equation you use

Get time from vertical component, then distance in that time from horizontal.
$a=-9.81 \mathrm{~m} / \mathrm{s}^{2} \quad$ Vertically: $\quad v_{v}=-v_{o v}$ because of symmetry. Use this in equation of motion:
$\begin{array}{ll}x_{0}=0 \mathrm{~m} \\ x=60 \mathrm{~m} & v_{v}=v_{o v}+a t\end{array} \quad$ Negative divided by
UP is positive
RIGHT is positive
$t=\frac{-v_{o v}-v_{o v}}{a}=\frac{-2 v_{o v}}{-9.8}=0.204 v_{v_{v}}$ negative is positive.

K Use this value for t with horizontal component of velocity.
Horizontally: $v_{\text {oh }}=v_{o v}=\frac{x-x_{0}}{t}$
$v_{\text {on }}$ and $v_{o \text { o }}$ are the same
size. A right-angled
triangle with two equal 45°
angles has two equal sides. $\quad \begin{aligned} & \text { There's a } v_{o v} \text { on both } \\ & \text { sides, so you can solve } \\ & \text { for } v_{o v} \text { and then for } v \text {. }\end{aligned}$

This is contact time
for foot and ball, not
flight time!
Rearrange $F \Delta t=\Delta_{m v}$ to get $F: \quad F=\frac{\Delta_{m v}}{\Delta t}=\frac{0.4 \times 24.2}{10 \times 10^{-3}}=968 \mathrm{~N}$ The average force of the kick is $970 \mathrm{~N}(2 \mathrm{sd})$.

Force is measured in Newtons.

$$
\begin{aligned}
& \begin{array}{l}
\text { Multiply both } \\
\text { sides by } v
\end{array} v_{v_{0}}{ }^{2}=294 \Rightarrow v_{v_{v}}=17.1 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \\
& \text { sides by } \mathrm{v}_{0} \\
& \text { From } 45^{\circ} \text { triangle, } v_{0}=\sqrt{2} v_{o v} \Rightarrow v_{0}=\sqrt{2} \times 17.1=24.2 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

there are no Dumb Questions

b. Experiencing a large net contact force hurts! Explain, using impulse, why football players wear padding.

If you have velocity v and are tackled so that your final velocity $=0$, your momentum has changed from mv to 0 . And Newton's Second Law / impulse says that $F \Delta t=m v$
If you're not wearing padding, then this happens over a short time. So F is high and it hurts. If you're wearing padding, then this happens over a longer period of time, as the padding deforms. So F is lower than if you weren't wearing any padding at all and it hurts less.

If a collision takes more time, the average force is lower - and it hurts less!

Q: So why does this thing have the special name "impulse"? Why can't I just call it "change in momentum" like we've been doing all along?
A: Because "impulse" is what it's called! If you understand how it works that's great - but you need to be able to communicate with other people who call it impulse.

$Q:$But if I explain what I mean, won't they get it?
A:
If your exam question asks you to explain something using impulse (like the question about padding did) then you need to know what impulse is.

Q:Yeah, the question about padding. Surely padding works because it absorbs some of the hit so you don't feel it as much by the time it gets to you? What does that have to do with impulse?

A:You just said "the time it gets to you". If the interaction takes place over a longer time, the average force is lower.

Q:What does that have to do with it?

A: Big forces hurt! If you were wearing a suit of armor instead of padding, it wouldn't deform. The collision would take the same time as it did before, and it would hurt just as much.

The game's great - but there's just been a spec change!

You and the SimFootball team have come up with a realistic game that's also fun to play! Big win! But before you all collect your VIP passes, the CEO takes a look at the game - and decides he wants to have a mode where you can play football on the moon!

The strength of the moon's gravitational field is lower then the Earth's

The moon is smaller and less massive than the Earth, so the gravitational force it exerts on objects is less, which means its gravitational field strength is less. You need to work out how this will affect the physics of the game

The players will be in a pressurized dome where there's plenty of air, so you don't need to worry about anything medical!

How is being on the moon going to affect the game (if at all)?

Sharpen your pencil

Which aspects of the game will change as a result of being on the moon and which will stay the same? The SimFootball programming team have already had a go at guessing what will happen - and you need to decide whether each of these statements is correct or not.

If you think a statement and the reasoning is correct, please explain why, using physics.
If a statement is incorrect, or an incorrect reason is given for a correct statement, then please explain why using physics - to debunk the myth! Use relevant equations wherever you can.
a. The ball will go further when passed horizontally because it weighs less so is easier to throw.
\qquad
b. The ball will go further when passed horizontally because it weighs less so spends longer in the air.
\qquad
c. The ball will go further when passed horizontally because the gravitational field strength is less.
\qquad
d. There will be less friction in the game so the players will slide further.
\qquad
\qquad
e. Tackles will involve less force because the players weight less.
\qquad
f. The optimal angle where punts go furthest won't be 45° any more because the ball weighs less.
\qquad
\qquad
g. The ball will have a higher velocity when it leaves a player's boot because it weighs less.
\qquad
\qquad
h. If a player runs into and collides with a goalpost, it will hurt less because they weigh less.

Which aspects of the game will change as a result of being on the moon and which will stay the same? The SimFootball programming team have already had a go at guessing what will happen - and you need to decide whether each of these statements is correct or not.

If you think a statement and the reasoning is correct, please explain why, using physics.
If a statement is incorrect, or an incorrect reason is given for a correct statement, then please explain why using physics - to debunk the myth! Use relevant equations wherever you can.
a. The ball will go further when passed horizontally because it weighs less so is easier to throw. No - wrong reason! The ball still has the same mass. Throwing force $F_{\text {nut }}=$ ma so the acceleration (and velocity) depend on the ball's mass, not its weight, if it's thrown horizontally.
b. The ball will go further when passed horizontally because it weighs less so spends longer in the air.

Yes. The ball accelerates vertically because of its weight. On the moon, the ball weighs less. Therefore it will go further, as it'll have a longer time to travel horizontally.
c. The ball will go further when passed horizontally because the gravitational field strength is less.

Yes. This is just another way of wording the statement in b.
d. There will be less friction in the game so the players will slide further.

Yes. If the gravitational field strength is less, the players weigh less, and the normal force is less. Therefore, there will be less friction in the game and the players will slide further.
e. Tackles will involve less force because the players weight less.

No. Newton's 2 nd Law is $F_{\text {net }}=$ ma. Tackling is horizontal. So their weights have nothing to do with it (weight would only have an effect if they were tackling verticallyl).
f. The optimal angle where punts go furthest won't be 45° any more because the ball weighs less.

No. The optimal angle is always 45° whatever planet you're on!
g. The ball will have a higher velocity when it leaves a player's boot because it weighs less.

No. $F \Delta t=\Delta(m v)$. Force, time and mass are still the same, so the velocity is still the same.
h. If a player runs into and collides with a goalpost, it will hurt less because they weigh less.

No. Same reason as a, e and g. Any time the change is in the horizontal direction but not the vertical direction, the important thing is the mass, not the weight.

For added realism, sometimes the players should slip

After successfully adding the 'moon mode', the SimFootball team have decided that the game needs one more element. At the moment, the players are able to make impossibly tight turns and change direction more or less instantly. But if they tried that in real life, they would slip.

But what makes someone slip? Or rather - what makes someone able to change direction in the first place? A change of direction means a change in velocity. Newton's First Law says that for a velocity to change, there must be a net force. But where does the force that enables a player to change direction come from?

Sharpen your pencil

a. If a player changes direction, they change velocity, so there must be a net force acting on them in the same direction as the change in velocity.
Explain where this force comes from, and why a player might slip in real life.
b. Describe in words how you'd go about working out whether a player will slip when they change direction.

Sharpen your pencil
 Solution

a. If a player changes direction, they change velocity, so there must be a net force acting on them in the same direction as the change in velocity.
Explain where this force comes from, and why a player might slip in real life.
The player can change direction because of friction between their foot and the ground.
If the player exerts a force on the ground with their foot, the ground exerts an equally-sized force on the player in the opposite direction - a Newton's Third Law pair of forces.

If the force required for the change in direction is smaller than the force that can be provided by friction, then the player will slip.
b. Describe in words how you'd go about working out whether a player will slip when they change direction.

Work out what the player's change in momentum is when they change direction.
Work out what the maximum friction force is given the player's weight, the normal force and the surface he's playing on.
$F \Delta t=\Delta p$ Use what you worked out for F and Δp to work out how long the player's foot needs to be in contact with the ground to provide this change in momentum.
Estimate whether this is reasonable or not.

You can change only direction horizontally on a flat surface because of friction

If you're trying to change direction horizontally on a flat surface, friction is the only thing that can provide the force you require to change your momentum. Otherwise, you would slip (unless there's a convenient wall or curb you can push against instead).
Change in direction takes the same time in each picture.

> If you want to change direction PARALLEL to a surface, friction is the only thing that can provide the force you require.

The game is brilliant, and going to X-Force rocks!

SimFootball is a success! Using physics, you were able to turn the real game into a computer game. Everything acts just like it should - on Earth and on the moon!

Newton's Laws give you awesome powers

You can use momentum conservation, Newton's Laws and free body diagrams to work out problems that involve forces.

BULLET POINTS

- Always start with a free body diagram of all the forces acting on an object.
- Mark on all the forces.
- Is there a net force?
- Work out forces you don't know.

Friction
A contact-dependent force that opposes motion.

Impulse is equal to the change in momentum, $F_{\text {net }} \Delta$. Impulse is sometimes given the symbol J.

Your Physics Toolbox

You've got Chapter 12 under your belt and added some problem-solving concepts to your toolbox.

How many objects?

Before you start a problem, think about how many objects there are interacting in it.
If there is only one object, you can probably use equations of motion to work out what happens
But if there are two or more objects, or if there are forces involved, then look to use Newton's Laws, momentum Conservation or impulse (or a combination of these).

Working with forces and equations of motion

A common way of making progress on a problem is to use Newton's Ind Law (usually in the form $F_{\text {net }}=$ ma, though occasionally in the form $F_{\text {net }} \Delta t=\Delta p$) to calculate the acceleration (or velocity) an object experiences.
Then you can use this value in your equations of motion to find out how the object moves as a result of the force.

The normal force

Be careful when calculating the normal force as part of a friction problem (or indeed any problem). The normal force is perpendicular to a surface. As long as the object in contact with the surface isn't accelerating in the perpendicular direction, the normal force has the right size to make the net perpendicular force equal to zero.

Calculating friction

The friction experienced by an object on a surface depends on the normal force and the coefficient of friction, μ, for that object and that surface.

$$
F_{\text {frit }}=\mu F_{N}
$$

"Constant velocity"

If an object moves with "constant velocity", it means that there is no net force on an object
To solve a problem where an object moves with constant velocity, you should draw a free body diagram and start equating forces and/or components of forces.

13 torque and work

*Getting a lift

You can use your physics knowledge to do superhuman feats.

In this chapter, you'll learn how to harness torque to perform amazing displays of strength, by using a lever to exert a much larger force than you could on your own. However, you can't get something for nothing - energy is always conserved and the amount of work you do to give something gravitational potential energy by lifting it doesn't change.

Half the kingdom to anyone who can lift the sword in the stone

The sword in the stone has acquired near-legendary status.

But now, in a shock move, anyone can attempt to lift it.
There are rules of course - but the promise of half the kingdom for anyone who succeeds is completely genuine.

The entire crossguard

?

SWORD IN THE STONE - RULES

ANYONE WHO LIFTS THE SWORD IN THE STONE IS ENTITLED TO HALF THE KINGDOM.

THE CROSSGUARD OF THE SWORD MUST BE RAISED AS HIGH AS THE MARK ON THE WALL, OR HIGHER.

ONLY ONE PERSON AT A TIME IS ALLOWED TO TRY.

OnLY TWO ATTEMPTS PER PERSON IN A LIFETIME.

Can physics help you to lift a heavy object?

The rules say that the crossguard of the sword must go up by at least 10.0 cm to reach the line. But they don't say anything about whether the sword needs to be detached from the stone at the time!

If you can use physics to lift both the sword and the stone 10.0 cm off the ground, you'll win. The only thing is the stone is far too heavy for one person to lift on their own, and it's not like you can take it to the moon to reduce its weight or use something like a crane that hasn't been invented yet...

Think about the physics you've learned so far. How might you be able to lift the sword and the stone?

> If you're asking "what's it like?" try to generalize. Ask "How can I apply a large force?" instead of "How can I lift a heavy thing?"

Jim: So how are we gonna do it? How do people use physics to lift heavy objects. What's it like ... ?

Joe: Maybe "how do people lift heavy objects" is the wrong question. Lifting involves applying an upwards force at least equal to the weight of the thing you're trying to lift. So maybe we should be thinking about how people apply large forces to objects.

Frank: That's a really good point.
Jim: Um ... how can we say that an equal force will lift it? Wouldn't we need to apply a force greater than the sword and stone's weight to get it to move upwards?

Joe: Once you've got the sword and stone going (with a force slightly larger than its weight) the most efficient way to lift it is to use a force equal to its weight. If there's no net force, it'll go up with a constant velocity.
Jim: Ah - I forgot about that Newton stuff. So if we can somehow apply a force equal to the sword and stone's weight, we'll be OK.
Frank: So how do people apply large forces? What circumstances might I want to use a large force in? What's it like?

Frank: Well, I guess that if you want to get through a locked door without a key, you could pry it open. You'd use a crowbar for that - to apply a large enough force to break either the door or the lock.

Joe: So how does that work?! I guess it has a long handle and a short claw ... you use it like a lever. You push down on the long end, and the short end does a lot of damage!

Jim: Yeah - far more damage than your pushing force would do if you just pushed on the door directly. Somehow, the force that the lever exerts on the door is greater than the force you exert on it.

Frank: So maybe we can rig up a lever with a long end and a short end to exert a larger force on the sword and stone than we can manage directly. I think we're on to something here ...

Use a lever to turn a small force into a larger force

It's just not possible for one person to generate enough force on their own to lift the sword and the stone - it weighs too much.

But by using a lever, you can exert a greater force on the sword and stone than you can manage by grabbing and pulling. You can use physics to increase the force you can generate.

Get a larger force at the end of the short arm.

Exert a force at the end of the long arm.

A lever is a bit like a seesaw - a rigid bar that can rotate about a fulcrum (or pivot point). If you push down on one end, the other end goes up.
In physics, the two sides of the lever are called the arms. If the lever arms are different lengths, you can use the lever to exert a large force at the end of the short arm by pushing down on the long arm.
But what size of force do you need to generate to lift the sword and stone?

Use a lever to

 exert a larger force than you could on your own.
always move together and can't move independently.

The stone is granite. We looked it up, and $1.00 \mathrm{~cm}^{3}$ of this granite has a mass of 2.680 grams.
a. The stone is 1.0000 m by 0.8100 m by 0.6900 m . What is the mass of the stone?

Hint: Be careful
with the units!
b. The sword's mass is 2.2 kg . What is the minimum force required to lift the sword and stone?

The stone is granite. We looked it up, and $1.00 \mathrm{~cm}^{3}$ of this granite has a mass of 2.680 grams.
a. The stone is 1.0000 m by 0.8100 m by 0.6900 m . What is the mass of the stone?

Work out volume of block in cm^{3} then multiply that by 2.680 grams to get mass.

$$
\begin{aligned}
\text { Volume } & =100.0 \times 81.0 \times 69.0=558900 \mathrm{~cm}^{3} \\
\text { Mass } & =560000 \times 2.68=1500000 \mathrm{~g}=1498 \mathrm{~kg}(4 \mathrm{sd})
\end{aligned}
$$

It's generally best to give your answers in SI units - in this case, kg rather than grams.
b. The sword's mass is 2.2 kg . What is the minimum force required to lift the sword and stone?

$$
\text { Total mass }=1498+2.2=1500 \mathrm{~kg}(4 \mathrm{sd})
$$

Minimum force will be the same size as the sword and stone's weight.

$$
\text { Weight }=m g=1500 \times 9.8=14700 \mathrm{~N}(3 \mathrm{sd})
$$

Be careful not to
get ' g ' (grams) and ' g ' (gravitational field strength) mixed up!

$Q:$- We've assumed that the minimum force required to lift an object is equal to its weight. But surely you need to use a larger force?

A:- Newton's 1st Law says that if the net force is zero, an object will move at a constant velocity. So the most efficient way to lift something is to exert a force on it that's a tiny bit larger than its weight for a short time. This gives it a small upwards velocity. Then you can continue with a force equal to its weight, so the object continues to move upwards with this velocity.

Q: So you DO need a force larger than the object's weight!
$A:$: Yes, but only slightly larger and for a very short period of time to get it started. You can approximate this to a force equal to the object's weight (with an extra initial 'nudge').

there are no

Dumb Questions

Q:
We've called the two ends of the lever "arms". But doesn't that imply that they can move independently (like my own two arms)?
A: Talking about the "arms" of a lever is physics terminology. Each side of the lever is an arm - but they're connected together and cant move independently.

Q:The whole setup looks like a seesaw, with two arms and a fulcrum. But how can you increase the force at the other end? Everyone knows that to balance a seesaw, you need the same weight - the same force - at each end.
A: : If you have an adult and a child on a seesaw, you can balance them by moving the adult closer to the center. The force of the child's weight is smaller than the force of the adult's weight, but they can still balance.

Q. OK, but the two sides of the seesaw are still the same length, right?

A:: Yes, but the distance between the adult and the fulcrum has changed. So the child's small weight is able to provide enough force to lift the adult's larger weight (by balancing then doing a small initial 'nudge' to get going) - just like you'd like to do with the sword and stone.

Q: So you mean that if you get the adult and child to balance, then saw off the 'extra' bit of seesaw behind the adult, I get a lever where the two arms are different lengths, like we were already talking about?
A: : You got it! Though you may have to reposition the adult slightly, to compensate for the missing bit of seesaw.

Do an experiment to determine where to position the fulcrum

If we use a lever to lift the sword and stone, a small force applied to the long arm will be able to exert a large force at the short arm. A quick look on the Sieges-R-Us website reveals that they have ten 15 kg stackable stones in stock - giving us a total of $10 \times 15=150 \mathrm{~kg}$ we can place on the long arm.

But where should we put the fulcrum? The rules say only one attempt per lifetime! We need to make sure we have the fulcrum in the right spot before actually trying to use the lever to lift the sword and stone.

Time to design an experiment!

You have 150 kg of
stackable stones on
the long arm. Where should you put the fulcrum

A small force on the long arm can balance out a large force on the short arm.

Don't worry if you're not sure what some of these
items are. Just do your best!
Design an experiment that will allow you to determine the relationship between the two forces required to balance a lever and the distance from the fulcrum to the point each force is applied at.
a. Underline the items of equipment you will use to obtain the data: Stopwatch, Metal ruler, Scales, Protractor, Double-sided tape, Pipette, Triangular prism, Air track, Set of identical masses
b. On the tabletop below, sketch the setup you will use to obtain the data, labelling the fulcrum and any relevant forces and distances.

Table top.
c. Explain how you will carry out the experiment.

Design an experiment that will allow you to determine the relationship between the two forces required to balance a lever and the distance from the fulcrum to the point each force is applied at.
a. Underline the items of equipment you will use to obtain the data: Stopwatch, Metal ruler, Scales, Protractor, Double-sided tape, Pipette, Triangular prism, Air track, Set of identical masses
b. On the tabletop below, sketch the setup you will use to obtain the data, labelling the fulcrum and any relevant forces and distances.

c. Explain how you will carry out the experiment.

Use the prism as the fulcrum and the ruler as the lever. Have the fulcrum in the middle of the ruler (so that the two halves of ruler balance), and put the masses at different distances from the fulcrum. Pile the masses on top of each other so that they press down on the same point, and use small amounts of blutac to avoid them slipping.

Start with one mass at the far end, and make sure one mass an equal distance away balances it. Then try moving two masses up and down to find the balance point. Repeat with three and so on.

Draw a table of results (mass 1, distance 1, mass 2, distance 2) and look for a pattern.

Many 'design an experiment'-style questions are open-ended. You will be provided with a range of equipment, and there may be more than one way of investigating what you've been asked about.

As long as you describe what you want to do and draw a clearly labelled diagram, you'll get the points if your experiment would work.

When designing an experiment, think about what you can D0 with each piece of equipment.
Now you can get on with doing this experiment! Your job is to find the balance point of the ruler when different weights are applied to each arm.
Find five large coins that all have the same value - you'll use these as your weights. You don't need to know the force exerted by a single coin in SI units, as you can use your own unit, the "coin-weight"!
Stick a round pen to a tabletop to use as your fulcrum. Keep it in the center of the ruler, and the smaller weight at one end, then slide the larger pile of coins up and down until the two sides balance. Use the measurements on the ruler to read off the distances between the center of each stack of coins and the fulcrum, and fill in the table below.
We've put the larger mass on the

Try it!

 right in the experiment, because the larger mass (sword and stone) is on the right in the other picture.Keep this at the
end of the ruler
Slide this mass to and fro until the lever balances.

Force 1 (coin-weights)	Force 2 (coin-weights)	Distance 1 (cm)	Distance 2 (cm)
1	1	15	
1	2	15	
1	3	15	
1	4	15	

We chose 15 cm for Distance I because it's halfway along a 30 cm ruler. If your ruler is a different length, then change the value in this column to halfway along your ruler.

Do you see a pattern? Write down anything you notice about the forces and their distances from the fulcrum if the ruler is to balance.

Tried it!

Now you can get on with doing this experiment! Your job is to find the balance point of the ruler when different weights are applied to each arm.

Find five large coins that all have the same value - you'll use these as your weights. You don't need to know the force exerted by a single coin in SI units, as you can use your own unit, the "coin-weight"!

Stick a round pen to a tabletop to use as your fulcrum. Keep it in the center of the ruler, and the smaller weight at one end, then slide the larger pile of coins up and down until the two sides balance. Use the measurements on the ruler to read off the distances between the center of each stack of coins and the fulcrum, and fill in the table below.

Force 1 (coin-weights)	Force 2 (coin-weights)	Distance 1 (cm)	Distance 2 (cm)
1	1	15	15
1	2	15	7.5
1	3	15	5.0
1	4	15	3.8

Do you see a pattern? Write down anything you notice about the forces and their distances from the fulcrum if the ruler is to balance.

If I double the force (e.g. by using two coins instead of one) then I need to half the distance between it and the fulcrum to keep the ruler balanced.

I also noticed that number of coins x distance from fulcrum is the same for both sides when the ruler is balanced.

Zero net torque causes the lever to balance

A torque is like a 'turning force.' The greater the torque, the greater the effect it has on the rotational motion of the object that the torque is applied to. (A torque can also be referred to as a turning moment.)

If we define clockwise as the positive direction, this torque is negative. Zero net torque,
as torques are equal sizes in opposite directions.

Torque is a vector - you define clockwise as positive and counter-clockwise as negative. The direction of rotation depends on the direction of the force and the direction of the displacement. If two torques are the same size but would cause rotation in opposite directions, there's zero net torque on the lever, and the lever balances.

The experiment you just did shows that the size of a torque is proportional to both the size of the force and the distance from the fulcrum. So if you double the force, the torque doubles. Or if you double the distance from the fulcrum, the torque doubles.

In physics, the Greek letter $\boldsymbol{\tau}$ (pronounced 'tau') is used to represent a torque. When you have a fulcrum, torque is defined as the displacement from the fulcrum a force is applied at \times the component of the force perpendicular to the lever. You can write this as an equation: $\boldsymbol{\tau}=\mathbf{r} \mathbf{F}_{\perp}$

Use torque to explain:
a. Why you can lift the sword and stone using a force smaller than their weight.
\qquad
\qquad
\qquad
b. Why door handles are positioned far away from the hinges.
\qquad
\qquad
\qquad
\qquad
c. Why a wrench (used to undo nuts and bolts) has a long handle.
\qquad
\qquad
\qquad
\qquad

Use torque to explain:
a. Why you can lift the sword and stone using a force smaller than their weight.

If you use a lever whose arms are different lengths a small force acting on the long end can produce the same torque as a large force acting on the short end, as torque $=$ distance from fulcrum x force. So you can use a small force to lift a large weight.
b. Why door handles are positioned far away from the hinges.

To open a door, you need to produce a torque, so that the door rotates round its hinges (fulcrum). If the door handle is far away from the hinges, you need a smaller force to produce the same torque, as the same force applied a greater distance from the fulcrum produces a greater torque.
c. Why a wrench (used to undo nuts and bolts) has a long handle.

You use the handle of the wrench to apply a torque to a nut (the fulcrum is the center of the nut). The longer the handle, the smaller the force you need to apply to produce the same torque.

there are no
 Dumb Questions

Q:Why are we calling a torque a "turning force" when the seesaw isn't turning - it's just swinging up and down?

A:
Swinging is just turning, but not full circle! A seesaw swings around a fulcrum, and if the ground wasn't there it would be able to rotate all the way round.
Q: what's the difference between a force and a torque?
A: : To exert a torque on an object, there needs to be a fulcrum that it can rotate about. A torque is a force applied to the object at a distance from the fulcrum, with a component that's perpendicular to the axis of the lever.

There's a picture of this on the opposite page.
526
Chapter 13

Q:In the equation $\mathrm{t}=\mathrm{r} F_{\perp}$, why is the letter r used to represent a displacement instead of x, the letter we usually use?
A : A torque produces a rotation. If you imagine the seesaw rotating all the way around, it would trace out a circle with the fulcrum at the center. The ' r ' stands for 'radius', as the radius of a circle is the distance from its centre to its edge.

If the seesaw was free to rotate all the way around the fulcrum, it would trace out a circle.

Q- It's confusing to use different letters to represent displacements. Why are we doing that?

A:- Using ' r ' in this equation is a physics convention that's followed any time circular motion is involved. It makes you think about the fact that the displacement is a radius, and that rotation is involved.

A torque causes an object to rotate about a fulcrum.

It's the perpendicular component of a force that produces a torque.

Only the force component perpendicular to the lever produces a torque.
In your experiment, the vertical forces you applied always acted perpendicular to the horizontal lever. But sometimes a force will be applied to a lever at an angle.

If a force is applied parallel to the lever, it won't rotate at all, and the torque will be zero.

produces no torque.

If a force, \mathbf{F}, is applied at an angle, θ, to the lever, only the perpendicular component of \mathbf{F} will produce a torque.

Sharpen your pencil

A force, \mathbf{F}, is applied to a horizontal lever at a point displacement \mathbf{r} from the fulcrum. The force is applied in such a way as to make the angle θ with the horizontal.
a. Draw a large sketch showing the lever and the relevant components of \mathbf{F}.
b. Use your sketch to derive an equation for the torque, $\mathbf{\tau}=\mathbf{r} \mathbf{F}_{\perp}$, in terms of \mathbf{r}, \mathbf{F} and θ.

The sketch will be a large version of this one.

Sharpen your pencil
 Solution

A force, \mathbf{F}, is applied to a horizontal lever at a point displacement \mathbf{r} from the fulcrum. The force is applied in such a way as to make the angle θ with the horizontal.

> a. Draw a large sketch showing the lever and the relevant components of \mathbf{F}.

Zero net force = static equilibrium

Newton's 1st law says that if an object has zero net force exerted on it, then it will continue at its current velocity, in other words, it won't accelerate. This is also known as static equilibrium.

Zero net torque = rotational equilibrium

If the net torque on a lever (or another object) is zero, then its speed of rotation doesn't change, in other words its rotation won't get faster or slower. This is also known as rotational equilibrium.

> If a lever isn't rotating (or is spinning at a constant rate) the net torque must be zero.

Q: Can I just memorise the equation $\mathrm{t}=\mathrm{rFsin}(\theta)$ or look it up on my equation sheet rather than working it out with triangles each time?
A - You can if you like ... but what if you come across a problem where you're given the angle that the force makes with the vertical, rather than the angle it makes with a horizontal lever. If you're used to starting with triangles you can work that out, but if you just assume the equation will be the same, you'll come undone.

Q: What is equilibrium?
A: Equilibrium is another word for balance. Static equilibrium is when forces are balanced - in other words, when the net force is zero. Rotational equilibrium is when the torques are balanced - in other words the net torque is zero.

Equilibrium is another word for balance.

Q: why is there a distinction between static and rotational equilibrium? Equilibrium's just equilibrium, right?!
A : A rocket firework that's just been started off is in rotational equilibrium, as there's no torque on it. But it isn't in static equilibrium as it's accelerating.

A Catherine-wheel firework that's just been started off isn't in rotational equilibrium, as it's spinning faster and faster due to a nonzero net torque. But it is in static equilibrium - as it isn't going anywhere, the net force on the firework must be zero.

Use torque to lift the sword and the stone!

The force you need to lift the sword and the stone is equal to its weight, which is very, very large! But you can use physics to make it easier by designing a lever.

A lever consists of two arms of different lengths which can rotate around a fulcrum. Applying a force produces a torque, which can cause the lever to rotate around the fulcrum.

> If an object will rotate around a fixed point, see if you can use torque to solve problems.

The equation for torque is $\boldsymbol{\tau}=\mathbf{r} \mathbf{F}_{\perp}$.
So if you make a lever and put the sword and stone (which exerts a large force due to its weight) at the end of a short arm then apply an equal torque on a long arm using stackable stones, you'll be able to arrange a setup where there is zero net torque on the lever, which is therefore in rotational equilibrium. From there, a tiny nudge will be enough to lift the sword and stone. Fame and fortune beckon ... you just need to work out where to put the fulcrum.

A lever, length L, has two masses on it. At one end is a sword and stone, mass m_{1} and displacement \mathbf{r}_{1} from the fulcrum. At the other end of the lever is a stack of stones, mass m_{2} and displacement \mathbf{r}_{2} from the fulcrum.
a. Write down an equation for \mathbf{L}, the total length of the lever, in terms of \mathbf{r}_{1} and \mathbf{r}_{2}. (Make left-to-right the positive direction, and make \mathbf{L} a positive vector. \mathbf{r}_{1} and \mathbf{r}_{2} are also vectors - do a sketch and be VERY careful with signs!)
c. Use these two equations to work out an equation for \mathbf{r}_{1} in terms of m_{1}, m_{2} and \mathbf{L}.
b. Write down the condition for the rotational equilibrium of the lever (from where a small nudge will allow you to lift the sword and stone).
d. If the lever is 10.00 m long, the sword and stone have a mass of 1500 kg and the stackable stones a mass of 150 kg , how far from the sword and stone end should the fulcrum be placed?

Sharpen your pencil Solution

A lever has two masses on it. At one end is a sword and stone, mass m_{1} and displacement \mathbf{r}_{1} from the fulcrum. At the other end of the lever is a stack of stones, mass m_{2} and displacement \mathbf{r}_{2} from the fulcrum.
a. Write down an equation for \mathbf{L}, the total length of the lever, in terms of \mathbf{r}_{1} and \mathbf{r}_{2}. (Make left-to-right the positive direction, and make \mathbf{L} a positive vector. \mathbf{r}_{1} and \mathbf{r}_{2} are also vectors - do a sketch and be VERY careful with signs!)
Make left to right the positive direction, and make L a vector going from left to right. \leqslant

If you chose a different way of defining the positive direction, your answer will work out the same in the end, but some of the minus signs in the algebra may be different.
b. Write down the condition for the rotational equilibrium of the lever (from where a small nudge will allow you to lift the sword and stone).

The net torque must be zero.

$$
\begin{array}{rll}
& r_{1} F_{1}+r_{2} F_{2}=0 & \begin{array}{l}
\text { Both terms are } \\
\Rightarrow \\
r_{1} m_{1} g+r_{2} m_{2} g=0 \longleftarrow \\
\Rightarrow \\
r_{1} m_{1}+r_{2} m_{2}=0
\end{array} \\
\text { multiplied by } g \\
\text { so } g \text { divides out }
\end{array}
$$

d. If the lever is 10.00 m long, the sword and stone have a mass of 1500 kg and the stackable stones a mass of 150 kg , how far from the sword and stone end should the fulcrum be placed?

Use equation from part c. with values

(m_{1} is stackable stones and m_{2} is sword and stone)

$$
\begin{aligned}
& r_{1}=\frac{-L m_{2}}{\left(m_{1}+m_{2}\right)} \\
& r_{1}=\frac{-10 \times 1500}{(150+1500)}=-9.09 \mathrm{~m}(3 \mathrm{sd})
\end{aligned}
$$

r_{1} is the displacement from the stackable stones end - need to work out r_{2}.
Displacement from sword and stone end will be:

$$
\begin{aligned}
& r_{2}=L+r_{1} \\
& r_{2}=10-9.09=0.91 \mathrm{~m}(3 \mathrm{sd})
\end{aligned}
$$

-
the sword and stone from the fulcrum.

Put brackets in, so there's only one occurrence of r, on

$$
r_{1}=\frac{-L m_{2}}{\left(m_{1}+m_{2}\right)}
$$

the left hand side.

$$
\begin{aligned}
r_{1} m_{1}+\left(L+r_{1}\right) m_{2} & =0 \\
r_{1} m_{1}+L m_{2}+r_{1} m_{2} & =0 \\
r_{1} m_{1}+r_{1} m_{2} & =-L m_{2} \\
\Rightarrow r_{1}\left(m_{1}+m_{2}\right) & =-L m_{2}
\end{aligned}
$$

Need to make a substitution to get rid of r_{2}. Rearrange equation from part a:

$$
r_{2}=L+r_{1}
$$

Substitute this into equation from part b :

Question Clinic: The "Two equations, two unknowns" Question

If the question gives you variable names, make sure you use the same ones in your answer.

You may be expected to spot this is useful from your sketch, rather than being asked explicitly to do it.

Always, always, always start with a sketch!

The buzzwords 'lever'
and 'fulcrum' tell you
that torque is involved.
2. A lever has two masses on it. At one end is a sword and stone, mass m_{1} and displacement r_{1} from the fulcrum. At the other end of the lever is a stack of stones, mass m_{2} and displacement r_{2} from the fulcrum.
a. Write down an equation for L in terms of r_{1} and \mathbf{r}_{2}.
b. Write down the condition for the rotational equilibrium of the lever.
c. Use these two equations to york out an equation for r_{1} in terms of m_{1}, m_{2} and L.
'Condition' probably means equation in this context, though you should write it in words as well as you get points for it!

Work out what variable(s) you need to get rid of, and make sure you do what they ask you to!

In this book we've concentrated on making substitutions, but if there's another way that makes sense for you, then go for it!

You can solve for two unknowns either by using a substitution or by setting up simultaneous equations. These methods are effectively the same, and it's up to you which to choose. If one of your unknowns is 'buried' deep inside a term, it's probably easiest to do a substitution. If both unknowns are terms in their own right (or are multiplied by just a number) then simultaneous equations will be quicker - but a substitution will still work.

BULLET POINTS

- The size of a torque is equal to the component of the force perpendicular to the lever x the displacement from the fulcrum.
- You can work out the perpendicular force component using trigonometry.
- If a problem involves something turning, you need to work out where the fulcrum is.
- Torque is a vector - the direction you're turning in matters.
- If you curl the fingers of your right hand in the direction you're turning in, your thumb points in the direction of the torque vector.
- If an object is in rotational equilibrium, it means that vector sum of all the torques on the object is zero.

Time to try using a lever to lift the sword and stone. Hopefully, by using physics, you'll be more successful than than the person who tried before you ...

So you lift the sword and stone with the lever

You've used what you know about torque to predict that you can lift a 1500 kg sword and stone by using only 150 kg of stackable stones to generate a force much larger than their weight with a lever.

So you set everything up, and as you lift the final stone into place, the sword and stone begin to move...

but they don't go high enough!

Although the sword and the stone get off ground, they don't go high enough. The crossguard of the sword needs to be raised by 10 cm for the lift to count, but it only went up by around 1 cm .

The stackable stones have definitely gone down by 10 cm at the other end of the lever - but the sword and stone haven't gone up by the same amount. What's going on?!

The stackable stones have gone down by 10 cm . So why haven't the sword and the stone gone up by 10 cm ?

Jim: But it didn't reach the line!. The stone end went down by 10 cm - why didn't the sword and stone end go up by 10 cm ?
Joe: Hang on while I do a quick sketch ...

Frank: Ooh, triangles!
Joe: Yeah, similar triangles! Look - the stackable stones lever arm is ten times longer than the sword and stone lever arm. So if the stackable stones side goes down 10 cm , the sword and stone end only goes up a tenth of that distance -1 cm .

Jim: If the stackable stones going down by 10 cm causes the sword and stone to rise by 1 cm , then I guess the stackable stones need to go down by 100 cm to make the sword and stone rise by 10 cm . Frank: That sounds like an awful lot of work to lift the stackable stones that high in the first place! Maybe it's easier to make the
two arms of the lever equal lengths. Then we only need to lift the stones that high in the first place! Maybe it's easier to make the
two arms of the lever equal lengths. Then we only need to lift the stackable stones 10 cm - a much smaller distance.

Joe: But we'd need 1500 kg of stackable stones to lift the sword and stone, instead of 150 kg . That's ten times as many stackable stones! Even though you only have to lift them a tenth of the distance, you're lifting ten times more weight than you were before.

Jim: I'm kinda starting to think that you can't get something for nothing. We either lift a tenth of the weight ten times the distance,
or the same weight the same distance.
Joe: Yeah, it's hard work either way around!

Similar triangles don't have
to be right-angled. They
just need to have the same Similar triangles don't have
to be right-angled. They
just need to have the same Similar triangles don't have
to be right-angled. They
just need to have the same
angles as each other.

Always look out for triangles

- and especially similar triangles!

Which do you think involves more work - lifting 10 stackable stones 1 m each, or 100 of them 10 cm each?

You can't get something for nothing

You can't get something for nothing. If you use 150 kg of stackable stones to lift a 1500 kg sword and stone, the long lever arm needs to be 10 times the length of the short one. But that means the sword and stone only get lifted a tenth of the distance that the stackable stones move through.

So to lift the 1500 kg sword and stone $0.10 \mathrm{~m}(10 \mathrm{~cm})$ off the ground, you need to lift the 150 kg of stackable stones 1.00 m off the ground to start off with - 10 times as high. That's a lot of work for you!

The 150 kg of stacking stones need to go down by 1.00 m to lift the sword and stone 0.10 m

Another way of lifting the sword and stone would be to make the two arms of the lever the same length and use 1500 kg of stackable stones. You only have to lift the stacking stones 0.100 m instead of 1.00 m - but you have to lift 10 times as much weight to take advantage of the smaller displacement!

If you put the fulcrum in the center, the stacking stones don't need to move down by so much to lift the sword and stone.

0.100 m

When you move an object against a force, you're doing work

You have a job to do - lift the 1500 kg sword and stone 0.100 m in the air by overcoming the gravitational force on it. In physics, if you displace an object in the opposite direction from a force that's acting on the object, you're said to be doing work on the object against the opposing force.

So when you lift a stackable stone, you do work on it against the force of gravity. And if a pile of stackable stones lifts the sword and stone (using a lever) then the stackable stones do work on the sword and stone against the force of gravity.

The work you need to do a job = force x displacement

In physics, the word work has a very specific meaning. When you do work on something against a force (e.g. by lifting it against the force of gravity), the amount of work you do depends on two things:

The component of the force you exert on the object that's parallel to other force you're working against. When you're lifting something against the force of gravity, this is the vertical component of the lifting force.

The displacement of the object in the same direction. When you're lifting something against the force of gravity, this is the vertical component of the displacement.

> To do WORK on an object, you need to use a FORCE to DISPLACE the object in the opposite direction from another force that's acting on the object.

(the stone's weight) are all parallel here, so $W=F \Delta x$

The work you do on the object is defined as the he parallel component of the force you use to move the object \times its displacement. This can be written as:

$$
W=\mathbf{F}_{\| \mid} \Delta \mathbf{x}
$$

where W is the work, $\Delta \mathbf{x}$ is the displacement and \mathbf{F} is the component of the force you're exerting on the object parallel to the object's displacement.

Which method involves the least amount of work?

You've come up with two different ways of lifting the sword and stone using a lever and some stackable stones. You can either lift 150 kg of stones 1.00 m , or 1500 kg of stones 0.100 m (depending on where you put the fulcrum) to enable the stacking stones to lift the sword and stone.

When you lift an object, you do work on it by displacing

 it upwards with an upwards force that counters the downwards gravitational force.

1500 kg of stackable stones lifted 0.100 m .

It would make sense to choose the easier method - the one that involves you having to do less work on the stackable stones in order to get them from the ground into a position where they can lift the sword and stone.

Sharpen your pencil

You need to do work on the stackable stones before they can do work on the sword and stone. But which method involves doing more work? Calculate the amount of work you need to do to:
a. Lift 150 kg of stackable stones 1.00 m .
b. Lift 1500 kg of stackable stones 0.100 m .
c. Comment on the sizes and the units of your answers.

Hint: Get the units of work from the units of the variable on the right hand side of the equation you use to calculate the work.

Sharpen your pencil

You need to do work on the stackable stones before they can do work on the sword and stone. But which method involves doing more work? Calculate the amount of work you need to do to:
a. Lift 150 kg of stackable stones 1.00 m .
b. Lift 1500 kg of stackable stones 0.100 m .
Lifting force same size as weight, so $F=m g$
$W=F \Delta x=150 \times 9.8 \times 1.00$
Lifting force same size as weight, so $F=m g$
$W=1470 \mathrm{Nm}(3 \mathrm{sd})$
$W=F \Delta x=1500 \times 9.8 \times 0.100$
$W=1470 \mathrm{Nm}(3 \mathrm{sd})$
c. Comment on the sizes and the units of your answers.
Both ideas involve doing the same amount of work on the stackable stones.
The units of work are force \times displacement. Force is measured in Newtons and displacement in meters, so the units of work are $N \mathrm{~m}$. You say "Newton meters" if
you're saying this unit out loud.

Work and torque are different because they involve different displacements.

Even though they share the same units (Nm), torque and work are very different things.

Torque, $\boldsymbol{\tau}=\mathbf{r} \mathbf{F}_{\perp}$, tells you how good a force is at turning something. The displacement in the equation is from the fulcrum to where the force makes contact, which is multiplied by the component of the force perpendicular to this displacement.

Torque is a vector, as the turning can be clockwise or counterclockwise along any axis in three dimensions.

Work, $W=\mathbf{F}_{| |} \Delta \mathbf{x}$, is a measure of how much energy you need to move an object using a force. The displacement in the equation is the displacement of the moved object, which is multiplied by the component of the force parallel to this displacement.

Work is also a scalar, as the same amount of work will be done by the same size of force moving something the same distance, regardless of direction.

Work has units of Joules

To avoid getting confused because torque and work have the same units, scientists measure work in something called Joules (J) where $1 \mathrm{~J}=1 \mathrm{Nm}$. If you're answering a question about work, you should always give your answer in Joules.

Work is

 measured in Joules.
Power is the

 rate at which you do work.Power's measured in Joules per second, J / s

If you lift something in a shorter time, your power output is higher.

Work is measured in Joules. You do the same amount of work to lift the stone the same distance each time, regardless of the time it takes.

The difference is your power output. Power is the rate at which you do work and is measured in Joules per second $(\mathrm{J} / \mathrm{s})$.

Because of how your body functions, you get more tired if you do the same work in a shorter time with a higher power output. So how tired you feel won't always correlate with the amount of work you've done.

there are no Dumb Questions

Q:: I don't like how physics steals words like 'work' and 'power' and makes them mean different things from usual.
A : Many words can be used in a variety of ways in everyday speech. You're right that in physics, words like work, power, and force have very specific meanings, but they have to so that people know exactly what you're talking about.

Q: I can make myself tired without doing any work at all if I hold my arm out at shoulder height with an object in my hand. The weight's not moving, so l'm not doing work on it. What's that all about?!
A:
: The fibers in your muscles are continually expanding and contracting (moving as a result of a force) to enable you to do that. You are doing work, but on your muscle fibers, not the object! A table can support the object quite happily without doing any work on it!

Q: you said over there that "work is a measure of how much energy you need to move something with a force." Is 'energy' another of these physics words with a very specific meaning?
A: : It sure is - and you're going to be doing a lot with energy in the next few chapters, starting now...

Energy is the capacity that something has to do work

If something has the capacity to do work, it means that it is able to exert a force to displace an object. But how much work might it be able to do?

Energy is the capacity that something

 has to do work. By lifting 150 kg of stackable stones 1.00 m , you are giving them the capacity to do $\mathbf{F}_{\| \mid} \Delta \mathbf{x}=150 \times 9.8 \times 1.00=1470 \mathrm{~J}$ of work.Another way of putting this is that you have given the stackable stones 1470 J of gravitational potential energy.

The total energy of everything in the entire universe is always constant. Closer to home, the total energy of an isolated system (for instance you, stackable stones, lever, sword and stone, plus surroundings) is always the same, or in other words energy is conserved.

> Energy is conserved.

Lifting stones is like transferring energy from one store to another

The gravitational potential energy that the stackable stones gain when you lift them doesn't just 'appear' from nowhere. You can think of the food you eat as a store of chemical potential energy, which your body can tap into to do work.

If you do 1470 J of work on the stackable stones, giving them 1470 J of gravitational potential energy, you can think of the energy being transferred from one store to another, as your body has 1470 J less chemical potential energy than it had before, and the stackable stones have 1470 J more gravitational potential energy than they did before, so have the capacity to do 1470 J of work.

> Doing work is a way of transferring energy.

But that was a complicated calculation where you had to be very careful with minus signs! And what's more - it wasn't obvious what height the stackable stones should start off at to lift the sword and stone the correct height (0.100 m off the ground) even when you'd worked out where to put the fulcrum.

Energy conservation helps you to solve problems with differences in height

The stackable stones are able to lift the sword and stone because of the difference in height between them.

With the lever in place, this difference in height causes a change in height for both the stackable stones and the sword and stone. This process involves energy transfer, from the stackable stones to the sword and stone.

You give an object gravitational potential energy by doing work on it, $W=\mathbf{F}_{\| \mid} \Delta \mathbf{x}$. As the force you're working against is the object's weight, $m \mathbf{g}$, and you're lifting it to a height, \mathbf{h}, the gravitational potential energy you give the object is $U_{\mathrm{g}}=m \mathbf{g h}$.

One of our stackable stones is missing

Unfortunately, in between your first attempt at lifting the sword and stone (where it lifted but didn't go high enough) and this one, a stackable stone has gone missing. Now you only have 9 stones each with a mass of 15 kg instead of $10 \ldots$

Differences drive changes that lead to energy transfer.

Sharpen your pencil

You are using a lever to lift the sword and stone (mass 1500 kg) a height of 0.100 m off the ground.
a. How much gravitational potential energy are you giving the sword and stone?
b. You have 9 stackable stones available to put on the other end of the lever, each with a mass of 15.0 kg . How much gravitational potential energy do you need to give the stackable stones in order for them to be able to lift the sword and stone to the required height?
c. What height do you need to lift the stackable stones to?

You are using a lever to lift the sword and stone (mass 1500 kg) a height of 0.10 m off the ground.
a. How much gravitational potential energy are you giving the sword and stone?

$$
\begin{aligned}
& u_{9}=m g h \\
& u_{9}=1500 \times 9.8 \times 0.10 \\
& u_{9}=1470 \mathrm{~J}(3 \mathrm{sd})
\end{aligned}
$$

You need to give the sword and stone 1470 J of gravitational potential energy.
b. On the other side of the lever, you have 9 stackable stones, each with a mass of 15 kg . How much gravitational potential energy do you need to give them in order for them to be able to lift the sword and stone the required distance?
The stackable stones need to be able to do 1470 J of work on the sword and stone. Therefore you need to give them 1470 J of gravitational potential energy.
c. What height do you need to lift the stackable stones to?

$$
\begin{array}{ll}
\text { Mass of stacking stones }=9 \times 15=135 \mathrm{~kg} . \\
U_{g} & =m g h \\
\Rightarrow h & =\frac{U_{g}}{m g}=\frac{1470}{135 \times 9.8}=1.11 \mathrm{~m}(3 \mathrm{sd}) \quad \begin{array}{l}
\text { This makes sense, as it's } \\
\text { more than } 1.00 \mathrm{~m} \\
\text { height (the you'd have needed } \\
\text { to lift } 10 \text { stones) }
\end{array}
\end{array}
$$

Q: why are energy and work useful?

A: Using energy conservation and work to do problems is often more straightforward than using forces.

Q:. Can you give an example of where using energy conservation to do a problem is easier than using forces?
A : If the problem involves differences in heights, for example if you need to lift an object, then using energy conservation is faster than using forces.

Any time there are differences that drive change, think about using energy conservation to solve problems.

Q: so what IS energy? It has the same units as work - does that mean they're both the same thing?
A: Not quite. Energy is the capacity that something has to do work.

Q: But I thought that energy was something to do with electricity? Like when you use a food mixer or boil a kettle, you're using energy, aren't you?!
A: Energy can be stored in a number of different ways - we've already mentioned gravitational potential and chemical potential energy. Electrical potential energy is another way - but we won't be dealing with that in this chapter.

Think - what was

the difference at the start, what change did it cause, and where has energy transfer taken place?

Will energy conservation save the day?

You've just calculated that lifting 135 kg of stackable stones 1.11 m gives them 1470 J of gravitational potential energy. This allows the stackable stones to do the 1470 J of work required to lift 1500 kg of sword and stone 0.100 m .

The rules say that you're allowed to have two attempts per lifetime, and this is your second attempt. Here goes ...

Oh. The sword and stone wobble a little, but don't go up in the air. They're very close to leaving the ground, but haven't quite made it.

If you can think quickly and work out what's gone wrong and how much extra you need to add to the stone side of the lever, there's still time to rescue the situation and claim your half of the kingdom!

- PrRAIN

You've done the same amount of work on the stackable stones as you want them to do on the sword and stone. So why haven't you managed to lift the sword and stone?

Jim: Might it be a rounding thing - like, we calculated the amount of work we'd need to do on the sword and stone then rounded down to 3 significant digits, so didn't do quite enough work on the stackable stones?

Joe: I don't think it's that. We did calculate the energy at one point, but we didn't use the rounded value to work out the height. We just used proportion - a tenth of the weight meant ten times the height.

Frank: Hang on ... you said 'weight' didn't you?! Look! Now that the lever's at a much bigger angle, the force of the stackable stones' weight isn't perpendicular to the lever any more - look! So we're using less torque than we thought.

Jim: But the weight vector of the sword and stone isn't perpendicular to the lever either. So its torque is less too. And as both force vectors make the same angle with the lever, the torques they produce will still be the same whatever angle the lever's at.

Frank: Hmmm. I think you're right. There must be another reason that we've not managed to do enough work on the sword and stone to lift it properly.

Joe: Wait...this isn't an ideal situation...what about friction?
Frank: How do you mean?
Joe: Well, if there's some friction in the fulcrum, we'd need to use more force to overcome it than if it's perfectly frictionless.

Frank: Ahh ... we'd be doing work against the force of friction as well as doing work against the force of gravity!

Jim: But how can you tell? It's not like the fulcrum gets lifted up.
Joe: Right...but before, we were expecting to use 100% of the stackable stones' gravitational potential energy to do work against gravity to lift the sword and stone. But we also need to do work against friction in the fulcrum. So not all of the stackable stones' energy is available to lift the sword and stone. Quick - find something else we can put on the lever ...

You need to do work against friction as well as against gravity

The sword and stone are teetering on the brink because it's impossible to be 100% efficient.

Your calculation assumed that all of the gravitational potential energy in the stackable stones would be available to do work on the sword and stone, so that all the stored energy you started with would be transferred in this way.

But there will be friction in the fulcrum of the lever, and some of the stackable stones' gravitational potential energy will go towards increasing the fulcrum's internal energy as you do work against the force of friction.

But as long as there isn't too much friction, it shouldn't be too difficult to tip the balance ...

Fortunately, the fulcrum's well-oiled, and the simple act of hanging your coat on the stackable stones is enough to tip the lever, lift the sword and stone, and gain you half the kingdom! Result!

Lower internal energy

Higher internal energy

Higher internal energy

The higher something's temperature, a measure of the higher its internal energy.

Doing work against friction increases internal energy

It's possible to increase something's internal energy by doing work on it against the force of friction. The most obvious way of seeing this is by pushing something along the ground. If you push it long enough, its temperature will increase (and so will the temperature of the ground).

If you think about the particles as marbles, the two surfaces moving over each other is a bit like like jiggling and jostling a tray of marbles around so that the marbles end up with a greater average speed, and therefore a greater internal energy.

Something similar happens in the fulcrum of the lever, where the moving parts rub together. This time, most of the gravitational potential energy in the stackable stones does work against gravity and is transferred to gravitational potential energy in the sword and stone.

But work is also done against the friction that comes from the moving parts of the fulcrum rubbing together. This leads to some of the stackable stones' gravitational potential energy being transferred to the internal energy of the fulcrum.

In physics, heating is defined as energy transfer caused by a temperature difference. If an object with a high temperature is placed in an insulated bucket of low temperature water, the internal energy of the water rises and the internal energy of the object falls by the same amount, until they are both the same temperature. (This process is sometimes called heat transfer.)

If you imagine the particles in each object as marbles, then it's like fast-moving marbles in the high temperature object continually jostling slow-moving marbles in the cold water, until the balls in both are moving with similar average speeds.

Here, we've only shown the energy that's transferred as a 'star'. The high temperature block still has internal energy. It's just that no more energy transfer is taking place because the difference in temperature has been evened out.

> Heating is energy transfer caused by a temperature difference.

It's impossible to be 100% efficient

Back with the sword and stone, you've realized that not all of the gravitational potential energy in the stackable stones will be available to do work against the force of gravity by lifting the sword and stone. You also need to do work against the force of friction in the fulcrum - which you've successfully done by hanging your coat on the stackable stones!

The efficiency of your lever is the fraction of energy that it can usefully transfer to the sword and stone. Increasing the internal energy of the fulcrum isn't useful to you! The total energy is always conserved - some is transferred to the sword and stone and some to the fulcrum.

Efficiency is the fraction of energy you can usefully transfer.

It's like having a banking system where you're not able to transfer dollar bills from one place to another without some of them going through a shredder! You could try not transferring any of your money - but then you'll never be able to do anything useful with it!

Tonight's talk: Energy and Work go head to head.

Energy:

Oh hi work, what are you up to today?

Hey - there's no need to get so hot under the collar! What's up?

Oh yes, I have rather hogged the limelight recently!

Well, to be fair ... I'm in there too!

But if it wasn't for me, you wouldn't be able to happen at all!

Well, energy is the capacity that something has to do work. If something doesn't have a capacity to do work, then it can't do work. No me - no you!

I'm the capacity that something has to do work!

OK then - I'm always conserved, and I can't be created or destroyed. How about that then?!

Work:

Whatever it is ... it'll be more useful than what you're up to, I'm sure!

Well, to tell you the truth, I'm feeling a little left out. It was great back at the start of the chapter when I was the star of the show. I loved the attention. But now you've come along, people are thinking almost exclusively about you instead.

Yeah, and it's me who's the useful one! If you want to get something moved by applying a force, I'm right in there!

But only as a noun - not a verb. If work is done on something, the energy is transferred. See?

Err ... I don't think so. How can you say that I depend on you?

There you go - playing with words as usual and not letting yourself be pinned down. At least I know what I am - a displacement \times the component of a force in the same direction. But what are you?

That's not what you are though - that's just words!

Well, it sounds a bit metaphysical - but is it physics?! And it still doesn't tell me what you actually are!

Energy:

I guess that's because you can't pin me down really. You can't measure me directly. You can only measure changes as I'm transferred from one thing to another.

Meaning ..

That's not entirely true. Yes, doing work is one way of transferring energy, but I can also be transferred through heating, if there's a temperature difference between two things. The hot one gets cooler (so its internal energy gets lower) and the cool thing gets hotter (so its internal energy gets higher, until they both have the same temperature

Yeah, but sometimes you do transfer me to raise something's internal energy as well - when there's friction involved.

Yeah ... I guess that's something we agree on. I don't get to go to such interesting places if there's too much friction.

And you still couldn't do anything without me - so there!

Work:

Ha! Now there's where you can't get on with your life without me!! You need me!

Well, when work is done, energy is transferred. If it wasn't for me, you'd be totally stuck in one place all the time. No holidays, no day trips - just stuck.

But that's all the same, isn't it? Where's the excitement?! At least when I act on something, you usually get transferred in a different way - like into something's potential energy. I give your life variety!

Ah yes, friction. I hate him. Y'know, the reason I didn't get a bonus this year was because I wasn't efficient enough. And guess whose fault that was!

But I'm still more useful than you!

Whaaatever.

A 'turning force" equal to component of force perpendicular to arm \times distance from the fulcrum

When moving an object in the opposite direction from a force, work done $=$ force \times displacement parallel to force

The capacity that something has to do work.

The capacity something has to do work due to its increased height.

The total energy of a system must be the same before and after a change to the system, as energy is conserved.

Your Physics Toolbox

You've got Chapter 13 under your belt and added some problem-solving tools to your toolbox.

"Zero net torque"

If you have a problem where something could potentially rotate and you have to work out the force you need to apply to make sure it doesn' t, then you are being asked what force is required for there to be zero net torque.
When you're working with torques, take care to make one direction of rotation positive and stick with it.

"Spot the difference"

Differences drive changes that lead to energy transfer.
If there's a difference in the height of an object between the start and finish of a problem, look and see if you can use energy conservation instead of forces to solve it.

Lifting an object

 If you have to lift an object in a physics problem, you should assume that the minimum force you require is equal to the object's weight (unless there is friction involved).This is because Newton's Is Law says that with zero net force, an object continues with a constant velocity. So once you've got it going upwards with an extra little 'nudge', you only need to exert a force equal to its weight to maintain its velocity.

Doing work

Doing work is a way of transferring energy from one store to another.
If you do work against a gravitational force by lifting an object, you increase its gravitational potential energy. If you do work against a frictional force by pushing an object, you increase the internal energy of the object and of the surface it's in contact with.

14 energy conservation

 Making your life easier *

Why do things the hard way when there's an easier way?

So far, you've been solving problems using equations of motion, forces and component vectors. And that's great - except that it sometimes takes a while to crunch through the math. In this chapter, you'll learn to spot where you can use energy conservation as a shortcut that lets you solve complicated-looking problems with relative ease.

The ultimate bobsled experience

The fairground has designed a unique, new, state-of-the-art bobsled track that's due to open soon. But before anyone can use it, it has to be designated as safe to ride. That's your job. Even though you're not a bobsledder, you can still use physics to figure out whether or not any adjustments have to be made.

From the start to checkpoint 1 , the track has a uniform slope. Between checkpoints 1 and 2, the track drops $\mathbf{3 0 . 0} \mathbf{m}$, but the track undulates - the bobsled's even going uphill for a bit! Then the third part of the track is totally flat - where the bobsled is stopped by applying its brake to the ice.

Your job is to work out what the bobsled's speed will be at each checkpoint, and how hard you need to brake at the end.

Start Checkpoint 1

Checkpoint 2

Start any problem with a sketch and by asking yourself "What's it LIKE?"

Can you see any parts of the bobsled track that you already know how to deal with?
 the horizontal and drops 20.0 m in height between the start and the first checkpoint.
a. What distance does the bobsled travel between the start and the first checkpoint?
b. What is the component of the bobsled's weight parallel to the slope? Hint: You don't know a value
for the bobsled's mass, so this
answer won't be purely numerical
and will have ' m ' in it
c. What is the bobsled's speed at the first checkpoint?

Sharpen your pencil Solution

A bobsled, mass m, travels down a uniform slope that makes an angle of 40.0° with the horizontal and drops 20.0 m in height between the start and the first checkpoint.
a. What distance does the bobsled travel between the start and the first checkpoint?

$$
\begin{aligned}
\sin (\theta) & =\frac{0}{h} \\
h & =\frac{20.0}{\sin (40.0)} \\
h & =31.1 \mathrm{~m}(3 \mathrm{sd})
\end{aligned}
$$

b. What is the component of the bobsled's weight parallel to the slope?
 add up to 90°. add up to 90°.

Bobsled's weight $=m g$
F_{11} component down the slope is the side opposite θ.
Use similar triangles to calculate side:

If your answer contains variables,
such as 'm' and ' g ', you don't need to put in units at the end, as the variables already have units. But you still need units for a purely numerical answer.

Triangle Tip: sketch extreme angles

If you're not sure which angle in your force vector triangle corresponds to the angle of your slope, sketch a slope with a small angle, θ. Making this angle small

Now draw the force triangle. Draw on the weight pointing straight down. Then draw in the parallel and perpendicular components. It doesn't matter which way round you draw the components, as the triangle's sides will still be the same length.

If you want the normal force, it's usually easiest to draw the triangle this way round, with the perpendicular component below the object.
θ is the small angle in the slope triangle - so θ will also be the small angle in the force triangle.
c. What is the bobsled's speed at the first checkpoint?

$$
\begin{aligned}
F_{\text {net }} & =\mathrm{ma} \\
0.643 \mathrm{~m} / \mathrm{g} & =\mathrm{m} / \mathrm{a} \\
a & =0.643 \mathrm{~g} \quad \text { The acceleration is } 0.643 \mathrm{~g}, \\
v^{2} & =v_{0}^{2}+2 a\left(x-x_{0}\right) \\
v & =\sqrt{0+2 \times 0.643 \times 9.8 \times 31.1}=19.8 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

Slope is the same for

Start
Parallel component.

Forces and component vectors solve the first part ...

The first part of the track has a uniform slope, that always makes the same angle with the horizontal. This means that the bobsled always experiences the same net force down the slope, as the component of the bobsled's weight parallel to the slope is constant.

And you've just worked out that the bobsled will have reached a speed of $19.8 \mathrm{~m} / \mathrm{s}$ when it reaches the first
checkpoint. So far, so good ...

...but the second part doesn't have a uniform slope

However, the second part of the bobsled run isn't quite as straightforward. Although the track drops a further 30.0 meters, the slope definitely isn't uniform - it has peaks and dips along the way. Sometimes the bobsled's even going uphill!
Any time the angle of the slope changes, the component of its weight parallel to the slope also changes. This means that the net force on the bobsled changes, so the size and direction of its acceleration changes.

This is a problem, because the equations of motion only work when an object's acceleration is constant. So you can't use the same method as you did for the uniform slope.

> An object moving down a slope is accelerated by the component of its weight parallel to the slope.

How can you deal with an undulating slope when all you know is that the bobsled drops 30.0 meters between the the first and second checkpoints?

Joe: But the next section's more difficult - the slope changes all the time! The bobsled's acceleration won't be constant.

Jim: Maybe we can split the section up into lots of tiny sections? If the slope is uniform for a couple of meters, we could do a calculation for that, and then for the next bit, and then for the next bit and so on. Then add together all the changes in speed to get our final answer.

Joe: That'll take for ever! I don't think you could do it by hand.
Frank: You could probably program a computer to do that kinda job ... but I've no idea how to do that.
Jim: Maybe we're going about this the wrong way. We've been thinking in terms of forces so far, but what about energy?

Joe: Hmmm. The bobsled loses 30.0 m of height. So the bobsled has more gravitational potential energy at the start of the section than it does at the end because of the difference in height.

> Any time you see a change in height, think about using energy conservation.

A moving object has kinetic energy

At the top of the slope the bobsled has more gravitational potential energy than it does part-way down or at the bottom because of the difference in height.

Moving objects are said to have kinetic energy. They're able to do work by exerting a force that displaces something - that's how hammering in a nail works. If the hammer was stationary and didn't have a velocity, you couldn't use it to do work on the nail!!

Differences drive changes that involve energy transfer. The difference in height leads to a change in the velocity of the bobsled. This means that the bobsled gains kinetic energy as it loses potential energy. If the bobsled's potential energy goes down by 1000 J due to the difference in height, its kinetic energy increases by 1000 J .

If you can work out an equation for the kinetic energy, you'll be able to use energy conservation to calculate the bobsled's velocity at checkpoint 2 due to its change in height.

This is assuming there's no friction - and there won't be that much on ice.

This is kinetic energy remaining as kinetic energy
The change in potential energy is the same size as the change in kinetic energy because energy is conserved.

Sharpen your pencil

a. Imagine a moving hammer doing work on a nail by exerting a force on it to move it a displacement into a piece of wood. The more kinetic energy the hammer has, the more work it can do. With this in mind, what variables do you think the hammer's kinetic energy might depend on, and why?

Now you can collect useful equations that will help you work out an equation for kinetic energy. In this "Sharpen your pencil", you're only writing the equations down - you'll do the rearranging and substituting on the next page. If you can't remember the equations, it's OK to look them up in appendix \$.
b. Write down an equation for the gravitational potential energy of the bobsled, mass m, at its highest point, height \mathbf{h}.
c. Write down an equation of motion for a falling object that involves $\mathbf{x}, \mathbf{x}_{0}, \mathbf{v}_{0}, \mathbf{v}$ and \mathbf{a}.

Sharpen your pencil
 Solution

a. Imagine a moving hammer doing work on a nail by exerting a force on it to move it a displacement into a piece of wood. The more kinetic energy the hammer has, the more work it can do. With this in mind, what variables do you think the hammer's kinetic energy might depend on, and why?

$$
\begin{aligned}
& \text { The hammer will do more work if it has a high speed. } \\
& \text { The more work the hammer } \\
& \text { does with hammer will do more work if it has a large mass. the } \\
& \text { larger the displacement of } \\
& \text { So kinetic energy must depend on both mass and velocity. } \\
& \text { the nail with each hit. }
\end{aligned}
$$

Now you can collect useful equations that will help you work out an equation for kinetic energy. In this "Sharpen your pencil", you're only writing the equations down - you'll do the rearranging and substituting on the next page. If you cant remember the equations, it's OK to look them up in appendix \$.
b. Write down an equation for the gravitational potential energy of the bobsled, mass m, at its highest point, height \mathbf{h}.

This gives you an expression

$$
\begin{aligned}
& u_{g}=F \Delta x=m g h \text { for the potential energy } \\
& \text { that will be transferred }
\end{aligned}
$$

to kinetic energy.
c. Write down an equation of motion for a falling object that involves $\mathbf{x}, \mathbf{x}_{0}, \mathbf{v}_{0}, \mathbf{v}$ and \mathbf{a}.

$$
\begin{aligned}
v^{2}=v_{0}^{2}+ & 2 a\left(x-x_{0}\right) \\
& \text { This will help you to connect the } \\
& \text { difference in height with the speed. }
\end{aligned}
$$

there are no

Dumb Questions

Q:- If I know the difference in height between the start and end of a uniform slope, I can work out an object's velocity at the end, right?

A:: Yes. If a slope is uniform and always at the same angle (like the first part of the track was), you can use forces and component vectors to calculate the net force on an object, and therefore its acceleration and final velocity.

QWhat about an undulating slope? Can I do the same to solve that problem?
$A:$: You could in theory ... though not easily. You'd need to work out the net force on the object for every tiny part of the slope. This is practically impossible unless you program a computer do to it for you.

Q:- Does a problem with an undulating slope always need a computer to solve it?
A: - No - you can use energy conservation. The potential energy that the object has at the top of the slope must be transferred to kinetic energy as the object goes down the slope.
 What's kinetic energy? A: The capacity that something has to do work due to its velocity. Moving things have kinetic energy.

QI know that the potential energy is mgh, but what's the equation for kinetic energy?

A:: That's what you're in the process of working out. So far, you've realized that an object's kinetic energy must depend on its mass and velocity. And you're about to do some substitutions to see exactly how ..

The kinetic energy is related to the velocity

Moving objects have kinetic energy.

As the bobsled gets lower down the track, some of the potential energy it had at the start will be transferred to kinetic energy. The kinetic energy the bobsled gains must be equal to the potential energy that it loses.

The kinetic energy must depend somehow on the mass and velocity of the bobsled. If you can work out an equation for the change in kinetic energy, you can use it to calculate the bobsled's change in velocity between the first and second checkpoints - and therefore its velocity at the second checkpoint.

Sharpen your pencil

a. The two equations you wrote down on the previous page, $U_{g}=m \mathbf{g h}$ and $\mathbf{v}^{2}=\mathbf{v}_{0}{ }^{2}+2 \mathbf{a}\left(\mathbf{x}-\mathbf{x}_{0}\right)$, are both written down in the form that you'll find them on equation sheets - but they use different letters to represent the same quantities. If you're dealing with an object dropped straight down and accelerated by gravity, write down which variables in the equations are equivalent to each other.
b. By making a substitution for the change in height, show that the kinetic energy (K) of an object dropped straight down from a stationary start at height \mathbf{h} which started with potential energy, $U_{\mathrm{g}}=m \mathbf{g h}$ is $K=1 / 2 m \mathbf{v}^{2}$.

Solution

a. The two equations you wrote down on the previous page, $U_{g}=m \mathbf{g h}$ and $\mathbf{v}^{2}=\mathbf{v}_{0}{ }^{2}+2 \mathbf{a}\left(\mathbf{x}-\mathbf{x}_{0}\right)$, are both written down in the form that you'll find them on equation sheets - but they use different letters to represent the same quantities. If you're dealing with an object dropped straight down and accelerated by gravity, write down which variables in the equations are equivalent to each other.
$u=m g h \quad v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$
In the first equation, the displacement is h; in the second it's $x-x_{0}$.
In the first equation, the acceleration is g; in the second it's a.
b. By making a substitution for the change in height, show that the kinetic energy (K) of an object dropped straight down from a stationary start at height \mathbf{h} which started with potential energy, $U_{g}=m \mathbf{g h}$ is $K=1 / 2 m \mathbf{v}^{2}$.

Stationary start, so $v_{0}=0$. It's sometimes a good idea to drop the ' g ' subscript
Energy is conserved, so $u_{\text {start }}=K_{\text {end }}$
The change in height, h, is $x-x_{0}$ so rearrange and substitute.
Substitute
' g ' for ' a '. $\rightarrow v^{2}=2 g\left(x-x_{0}\right)$
$\lambda\left(x-x_{0}\right)=\frac{v^{2}}{2 g}$
$\begin{aligned} & \text { Substitute ' } h \text { ' }>h=\frac{v^{2}}{2 g} \text { Substitute for ' } h \\ & \text { for ' } x-x_{0}^{\prime}\end{aligned} \quad K_{\text {end }}=U_{\text {start }}=m g h=m g \frac{v^{2}}{2 g}$
from U_{g}, the gravitational potential energy.
This is because the subscript is only to distinguish gravitational potential energy from U_{s}, the elastic potential energy of a spring.
In a situation where there are no springs, and there could be confusion with ' g ', the gravitational field strength, it's best just to use the symbol ' U ' with no subscript for gravitational potential energy. This also allows you to write $U_{\text {start }}$ and $U_{\text {end }}$ more easily.

The same change in height always leads to the same change in potential energy, regardless of path.

The amount of energy transferred only depends on the change in height.
The bobsled has a certain store of potential energy as a result of being at a certain height. Its potential energy store doesn't depend on what path it took to get up there in the first place.

The same change in height always leads to the same change in potential energy when the bobsled's going down as well as when it's going up. So that change in potential energy must be transferred to kinetic energy, whatever path the bobsled takes (assuming there's no friction). The bobsled will always have the same change in kinetic energy for the same change in height.

Calculate the velocity using energy conservation and the change in height

The kinetic energy of a moving object is given by the equation:

$$
K=1 / 2 m \mathbf{v}^{2}
$$

This means that if you know the bobsled's mass and kinetic energy, you can use them to calculate the bobsled's velocity.

You can calculate the bobsled's kinetic energy using energy conservation. The difference in its speed between checkpoint 1 and checkpoint 2 is because of the difference in height between the two checkpoints. So the change in potential energy and the change in kinetic energy must be the same size.

Sharpen your pencil

A bobsled travelling down a track has just reached its first checkpoint (CP1). The second checkpoint (CP2) is at the bottom of the slope, 30.0 m lower than the first.

If the bobsled has a speed of $19.8 \mathrm{~m} / \mathrm{s}$ at CP1, what is its speed at CP2? (The bobsled's potential + kinetic energy at the start will be equal to its kinetic energy at the end.)

Hint: It's a
good idea to use subscripts to represent energy at each checkpoint, for example K, U_{1}, K_{2}, u_{2}, etc.

Sharpen your pencil Solution

A bobsled travelling down a track has just reached its first checkpoint (CP1). The second checkpoint (CP2) is at the bottom of the slope, 30.0 m lower than the first.

If the bobsled has a speed of $19.8 \mathrm{~m} / \mathrm{s}$ at CP1, what is its speed at CP2? (The bobsled's potential + kinetic energy at the start will be equal to its kinetic energy at the end.)

CPI: $K_{1}+u_{1}=m g h+1 / 2 m v_{1}^{2}$
CPD: $K_{2}=1 / 2 m v_{2}{ }^{2}$

$$
1 / 2 m v_{2}{ }^{2}=m i g h+1 / 2 m v_{1}{ }^{2}
$$

Each term is

$$
v_{2}^{2}=2 g h+v_{1}^{2}
$$ multiplied by ' m '. So ' m ' divides

$$
v_{2}=\sqrt{2 g h+v_{1}^{2}}
$$ out and cancels.

,

$$
\mid
$$

$$
v_{2}=\sqrt{(2 \times 9.8 \times 30)+19.8^{2}}
$$

$$
v_{2}=31.3 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
$$

$$
2 \quad=
$$

Like work, energy is a scalar quantity.

Work is a scalar, as the same amount of work will be done by the same size of force moving an object the same distance, regardless of direction.

Kinetic energy is also a scalar, as an object with velocity, \mathbf{v}, will have the same quantity of kinetic energy, $K=1 / 2 m \mathbf{v}^{2}$, regardless of the direction of its velocity.
A change in kinetic energy can be positive or negative. The sign doesn't signify a direction, just a change in the amount of kinetic energy. In the same way, a change in mass (another scalar quantity) signifies the change in the amount of 'stuff', and can be positive or negative.

> If you can use energy conservation to do a problem, it's less complicated than using forces.

When you have a vector, its direction is shown by its sign. But when you square a number, the result is always positive. Therefore, v^{2} is a scalar, because the information about the direction of v (its sign) has been lost. This means that kinetic energy must also be a scalar, as $K=1 / 2 m v^{2}$

Same velocity means same

> kinetic energy, regardless of direction.

You've used energy conservation to solve the second part

You've used energy conservation to work out that the bobsled has a speed of $31.3 \mathrm{~m} / \mathrm{s}$ when it hits the second checkpoint, 30.0 m below the first.

The same change in height will always leads to the same change in potential energy - and to the same change in kinetic energy if there's no friction.

to energy transfer.
$\mathbf{v}_{2}=31.3 \mathrm{~m} / \mathrm{s}$

In the third part, you have to apply a force to stop a moving object

The third part of the track is flat, and is the stretch where the bobsled must be brought to a halt by applying a brake to the ice. The track design states that the 630 kg bobsled must be stationary by the time it's covered 50.0 m .

How should you go about calculating the force you need to apply with the brake?

630 kg is the maximum mass the bobsled is allowed to have when there are people in it.

You need to work out the braking FORCE that'll stop the bobsled by the end of the track.
 apply with the brake to stop the bobsled?

Jim: Well, there's no change in height, so we can't do anything with energy. I guess we can use equations of motion to work out the acceleration, and then Newton's Second Law, $\mathbf{F}_{\text {net }}=m \mathbf{a}$, to calculate the force. That would work!

Joe: But it would be a lot of calculations. Are you sure we can't do something with energy conservation? That was easier than using equations of motion for the previous part of the track

Jim: Well, fairly sure. There's no change in height, so no change in potential energy. So how would we use energy conservation?

Joe: I was thinking - we need to stop the bobsled within a certain distance by applying a force. That sounds like doing work to me!

Frank: Yeah, you do work on something by applying a force. But I thought you actually had to displace something with the force - not just shove a brake down as you slide along some ice!

Apply a FORCE over a DISTANCE to stop the bobsled.

Any time you apply a force over a distance, think work and energy!

Jim: Wait, he might be right. When you catch a baseball, you exert a force on it with your hand. And your hand moves backwards as you catch it, so you apply the force over a distance. And that changes the kinetic energy of the ball.

Joe: So can we use the same kind of principle with calculating the force we need to stop the bobsled? We know its mass and velocity, so we can calculate its kinetic energy - AND we also know the distance that we need to apply the force over -50.0 m .
Frank: But where does the kinetic energy of the bobsled - or the baseball for that matter - go when you stop it?! It's not like it gets transferred to potential energy, is it?

Putting on the brake does work on the track

You need to stop the bobsled by applying the brake before it reaches the end of the course. You've 50.0 m to stop it, but you need to know what force to apply with the brake.

One way of doing this problem would be to calculate the acceleration that the bobsled experiences as is slows down, then use $\mathbf{F}_{\text {net }}=m \mathbf{a}$ to calculate the force required. This method is fine, and will give you the correct answer.

Do problems using energy conservation if possible.

BE the brike - SOLUTION

Your job is to imagine that you're the brake. What happens in terms of energy transfer from the moment that the brake is applied to the track to the moment that the bobsled comes to a complete stop? Write notes on the picture and give a written explanation below.

Sostling' particles

At the start the bobsled has kinetic energy; at the end its kinetic energy is zero.
The kinetic energy is transferred to the internal energy of the brake and the track, as the brake does work against friction. The movement of the brake over the track kind of 'jostles' the particles and makes them move around more vigorously inside the brake and the track.

Doing work against friction increases the internal energy

When you put on the brake, you transfer some of the bobsled's kinetic energy to the internal energy of the brake and the track by doing work against friction. This reduces the kinetic energy of the bobsled - and therefore its speed, as $\mathrm{K}=1 / 2 \mathrm{mv} 2$

Energy transfer also happens when small pieces of ice spray up from the track. Each individual piece of ice has a small amount of kinetic energy - not much compared with the bobsled's kinetic energy - but over 50.0 m this will have an effect.

When you do work against friction, you increase the INTERNAL ENERGY of the surfaces that are moving over each other.

With potential or kinetic energy, the whole object moves in an ordered way.

If it's a solid, you can think of this as increasing the intensity with which atoms vibrate. This is like giving the atoms kinetic energy and their bonds potential energy (like springs).

Increasing internal energy involves many tiny increases of kinetic or potential energy on a microscopic scale. But as these changes occur in random directions, they don't lead to a change in mechanical energy on a macroscopic scale, because there's no overall net displacement.

Q:So what's the difference between mechanical energy and kinetic energy? The names sound kinda similar.

A: Mechanical energy is a catch-all term for kinetic energy and potential energy - the kinds of energy stores that can be easily harnessed to do work.

Q: How do I calculate the mechanical energy of a system?
A :
: The mechanical energy is the total potential energy plus the total kinetic energy.

Q: Why is mechanical energy useful?
A: If there's no friction, the total mechanical energy is conserved. For example, you can work out the speed of an object that's at a lower height than it started off at by working out the change in its potential energy. This must be the same size as its change in kinetic energy, which you can use to calculate its speed.
Q :What is internal energy?
A: : Every object or substance has internal energy due to the movement of the particles it's made from. Particles in a solid vibrate; particles in a liquid or gas move around.

Q:Why is internal energy different from mechanical energy?

A:: An object's mechanical energy changes when all of its particles experience the same movement on a macroscopic (large) scale.

For example, if an object is lifted to a new height, its particles all move together in an ordered way and its potential energy increases. And if an object gets faster, its particles all move together in an ordered way and its kinetic energy increases.

Q: But internal energy also involves the movement of particles - which themselves have individual stores of kinetic or potential energy. Why is it different from the movement of particles in mechanical energy?

A:: The particles move or vibrate in a random, disordered way. When you increase the internal energy of an object, its particles don't all suddenly spontaneously relocate all together. They do move with greater individual energies on a microscopic scale. But on a macroscopic scale, the object as a whole stays where it is!

> Mechanical energy is about changes on a macroscopic scale.

Sharpen your pencil

A 630 kg bobsled going at $31.3 \mathrm{~m} / \mathrm{s}$ is to be brought to a halt by a brake applied to the ice track.
a. Describe this process in terms of energy transfer.
b. If the bobsled is to be stopped in 50.0 m , what force needs to be used?
c. Another way of helping to stop the bobsled is for the final part of the track to be slightly uphill. If the track goes up by 10.0 m during the final 50.0 m , what force would be required from the brake then?
d. If the bobsled is to be returned to the top of the track (50.0 m above the bottom) what is the minimum time it would take a 10.0 kW engine time to lift it the requisite height (assuming 90% efficiency)?
Watts (W) are a measure of power.

This means that only 90% of the engine's energy is 'usefully' used. The rest goes towards increasing the internal energy of various moving parts.

Hint: Assume that there's no friction, so the engine only has to do work against gravity.

Hint: Calculate the total energy required, then see how many seconds it takes the engine to produce that amount of energy.

Sharpen your pencil
 Solution

A 630 kg bobsled going at $31.3 \mathrm{~m} / \mathrm{s}$ is to be brought to a halt by a brake applied to the ice track.
a. Describe this process in terms of energy transfer.

The moving bobsled has kinetic energy. As it slows down, energy is transferred and the internal energy of the brake and the track increase. When the bobsled is stationary, the brake and the track will be hotter than they were before due to their increase in internal energy.
b. If the bobsled is to be stopped in 50.0 m , what force needs to be used?

Work done $=F \Delta x \quad K=1 / 2 m v^{2}$
Need to 'get rid of' all the bobsled's kinetic energy by doing work against friction.

$$
\begin{aligned}
F \Delta x & =1 / 2 m v^{2} \\
F & =\frac{1 / 2 m v^{2}}{\Delta x}=\frac{0.5 \times 630 \times 31.3^{2}}{50.0}=6170 \mathrm{~N}(3 \mathrm{sd})
\end{aligned}
$$

c. Another way of helping to stop the bobsled is for the final part of the track to be slightly uphill. If the track goes up by 10.0 m during the final 50.0 m , what force would be required from the brake then?
Some kinetic energy transferred to potential energy. Transfer the rest by doing work against friction. $F \Delta x+m g h=1 / 2 m v^{2}$

$$
\begin{aligned}
& F=\frac{1 / 2 m v^{2}-m g h}{\Delta x}=\frac{\left(0.5 \times 630 \times 31.3^{2}\right)-(630 \times 9.8 \times 10.0)}{50.0} \\
& F=4940 \mathrm{~N}(3 \mathrm{sd})
\end{aligned}
$$

d. If the bobsled is to be returned to the top of the track (50 m above the bottom) what is the minimum time it would take a 10.0 kW engine time to lift it the requisite height (assuming 90% efficiency)?
Work required to lift bobsled $=m g h=630 \times 9.8 \times 50.0=309000 \mathrm{~J}(3 \mathrm{sd})$
Engine produces 10000 Joules per second; 9000 Joules per second are useful.

Time taken $=\frac{309000}{9000}=34.3 \mathrm{~s}(3 \mathrm{sd})$

Dumb Questions

It doesn't matter how far the bobsled travels horizontally - as long as it ends 50.0 m higher than it starts, this is the energy required to get it up there.

Q- If energy conservation lets me do complicated questions this easily, what's the point of equations of motion and force?

A:- To understand energy conservation, you needed to build on top of a base of the other things you mention. And you cant solve every problem using energy conservation! It's another tool in your toolkit, but not one you'll be able to use exclusively.

QBut I will be using it a lot, right? Yes ... but when it's appropriate! A lot of scenarios will involve collisions where mechanical energy isn't conserved, and you can't directly calculate the change in internal energy. You'll have to use other tools as well as energy for dealing with problems like that.

Energy conservation helps you to do complicated problems in a simpler way

So the bobsled's OK? Nice! I'm up first!

You've just used energy conservation to solve complicated and even impossible-looking problems in a simpler way.
If you have something moving down or up a slope, then you can work out the change in its potential energy - and hence the change in its kinetic energy and speed - from the change in its height, no matter what path it takes.

And if there's friction involved, you can think of it in terms of energy transfer rather than forces if you're interested in displacement. This gives you the braking force of 6170 N that you need.

> Look out for differences in height, velocity etc. between the start and end of your problem that may allow you to use energy conservation.

The momentum-impulse equation says that if you apply a net force for a period of time, it causes a change in momentum, $\mathbf{F} \Delta t=\Delta \mathbf{p}=\Delta(m \mathbf{v})$

$\mathbf{F} \Delta \mathbf{t}=\Delta \mathbf{p}$

You get something's momentum from the time a force is applied for.

The kinetic energy equation says that if you do work on an object by applying a force for a certain displacement it gains kinetic energy, $\mathbf{F} \Delta \mathbf{x}=\Delta K=1 / 2 m \mathbf{v}^{2}$

$\mathbf{F} \Delta \mathbf{X}=\Delta \mathbf{K}$

You get something's
kinetic energy from the displacement a force is applied for.

There's a practical difference between momentum and kinetic energy

To think about pushing an object to start it off is a bit abstract. A more practical way of seeing the difference between momentum and kinetic energy is to think about stopping a moving object.
Imagine catching a ball thrown to you. The ball has a mass and a velocity, and you need to apply a force with your hand to stop it. The time you need to apply the force for depends on the ball's momentum. The displacement you need to apply the force over depends on the ball's kinetic energy - in stopping the ball, it does work on you to deform the glove and stretch your arm, which reduces the ball's kinetic energy to zero.

The exercise is about the practical difference between the time and the displacement it takes to stop an object - which illustrates the difference between its momentum and its kinetic energy

a. A baseball with a mass of 145 g is pitched at $35.8 \mathrm{~m} / \mathrm{s}$. Calculate (i) its momentum and (ii) its kinetic energy.
b. A bullet with a mass of 3.45 g is fired at $1500 \mathrm{~m} / \mathrm{s}$. Calculate (i) its momentum and (ii) its kinetic energy
c. You can catch the baseball by exerting a force on it with your hand. Explain, using physics, why you couldn't practically stop the bullet by exerting the same force. (Assume that by using 'soft hands' as you catch the ball, you apply the force and bring the ball to a stop over a displacement of 30 cm .)
a. A baseball with a mass of 145 g is pitched at $35.8 \mathrm{~m} / \mathrm{s}$. Calculate (i) its momentum and (ii) its kinetic energy.

$$
\text { (i) } \begin{aligned}
p & =m v=0.145 \times 35.8 \\
p & =5.19 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \\
\text { (ii) } K & =1 / 2 \mathrm{mv}{ }^{2}=0.5 \times 0.145 \times 38.5^{2} \\
K & =107 \mathrm{~J}(3 \mathrm{sd})
\end{aligned}
$$

b. A bullet with a mass of 3.45 g is fired at $1500 \mathrm{~m} / \mathrm{s}$. Calculate (i) its momentum and
(ii) its kinetic energy
(i) $p=m v=0.00345 \times 1500$
$p=5.18 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})$
(ii) $K=1 / 2 m v^{2}=0.5 \times 0.00345 \times 1500^{2}$
$K=3880 \mathrm{~J}(3 \mathrm{sd})$
c. You can catch the baseball by exerting a force on it with your hand. Explain, using physics, why you couldn't practically stop the bullet by exerting the same force. (Assume that by using 'soft hands' as you catch the ball, you apply the force and bring the ball to a stop over a displacement of 30 cm .)
The bullet has around 35 times more kinetic energy than the ball. To stop a moving object, you need to do the same amount of work on it as its current kinetic energy.
So you need to do 35 times more work on the bullet than on the ball.
Work $=F \Delta x$. If you exert the same size of force on the bullet, you need to apply it over a displacement of $30 \times 30 \mathrm{~cm}=900 \mathrm{~cm}=9$ meters for the bullet. You can't physically do that, so the bullet goes through your glove (and worse). Not recommended.

Q: so even though the equations for momentum and kinetic energy look similar, they're different?
A : Yes. They're different quantities with different units.
Q: But momentum and kinetic energy are both conserved?

A:: Momentum is always conserved. Total energy is also always conserved, but may be transferred between potential, kinetic and internal energy - it won't always be kinetic.

QIf a baseball and a bullet both have the same momentum, how come a bullet does more damage?
A : Momentum depends on v, but kinetic energy depends on \boldsymbol{v}^{2}. If an object has a high velocity, then \mathbf{v}^{2} really dominates. If the object is going 3 times faster, it'll have 9 times as much kinetic energy! So the same force requires 9 times as much displacement to stop it. That's part of the reason that a bullet will embed itself a large distance into a piece of wood, but a baseball with the same momentum will only make a small dent.

Energy is the capacity something has to do work. Total energy is conserved.

The definition of energy is the capacity something has to do work - if all of the energy could be harnessed and used in this way.

You can measure changes in energy as it is transferred, and use energy to do calculations.

Energy conservation is a law.

Energy conservation is a law of nature. A law isn't an object - you can't pick it up and put it in your pocket and say "this is energy conservation". But you can observe how things behave as a result of a law.

You can observe changes in kinetic energy, potential energy, internal energy, etc. When you look at all the changes in energy, you find that they add up to zero and the total energy is conserved. For example a positive change in kinetic energy may be offset by a negative change in potential energy.

Even though you can't "see energy" directly, you can express the law using words or math and use energy conservation to work things out.

> You deal with changes in potential, kinetic, internal etc energy - not absolute values.

Question Clinic: The "Show that" Question

The "show that" question is unusual in that it gives you the "answer" and asks you to show how you can get
 there from a given starting point. The key is to realize that it's OK to work backwards as well as forwards! Look at the equation you're supposed to end up with, and figure out which variables you'll need to make substitutions for. Also look back at earlier parts of the question, since you have probably already been asked to "do" something with the equations you'll need to manipulate for the "show that" question.

Question Clinic: The "Energy transfer" Question

After the roaring success of SimFootball, it's time for SimPool

A few weeks after your key role as physics consultant on the multi-million seller SimFootball game, the programmer is back in touch. They're working on a SimPool game - but have run into a problem.

Reusing the old code makes the pool balls stick together!

The pool balls need to bounce when they collide, but the programmer doesn't know how to work out the velocity they move with. His only experience is of the football players in the previous game - but they didn't bounce when they collided.

Reusing the football code in the pool game makes the pool balls stick together when they collide - which definitely isn't right!

Momentum conservation will solve an inelastic collision problem

The collision in the football game is called an inelastic collision, because the players don't "bounce" off of each other in an elastic way.

Momentum is always conserved in a collision. Since you know the mass and velocity of each player before the collision, you have one unknown (the velocity of the stuck together players after the collision) which you can work out using one equation (the momentum conservation equation).

You need a second equation for an elastic collision

The collision in the pool game is called an elastic collision because the pool balls bounce off of each other in an elastic way.

With the completely inelastic collision, you had a single mass moving with a single velocity after the collision. But with this elastic collision you have two masses each with their own velocity. You don't know either of the velocities - so this time there are two unknowns that you need to calculate.

Momentum is always conserved in a collision, but with two unknowns, a single momentum conservation equation is not enough. We'll need to come up with a second equation to fix the pool game - if you have two equations, you can work out two unknowns.

> To solve for two unknowns, you need
> two equations.

The football players become one mass with one velocity after the collision.

Before

After

Momentum conservation:

v_{f} is the only unknown, so you can use this one equation to calculate it.

Momentum conservation:

Where might you get a second equation from, so you can solve for the two unknown velocities?

Jim: Yeah, but that gives us a problem that we didn't have with
the inelastic collision. We wind up with two velocities after the inelastic collision. We wind up with two velocities after the collision instead of only one.

Joe: We can't use momentum conservation on its own to solve the problem this time - you can't get the values of two unknowns from one equation.

Frank: Yeah, but momentum is still conserved in an elastic collision - right? So we need to think of a second equation we can use alongside momentum conservation to solve the problem.

Jim: What about energy conservation? That's been useful to us before.

Joe: I'm not sure about that. it's not like the pool balls' height changes. We can't do anything with potential energy. Frank: But the pool balls are moving, right? What about their kinetic energy?

Jim: Yeah, the pool balls are moving before the collision, and they're moving afterwards, so they must have kinetic energy before and after.

Joe: How do we know for sure that some of the kinetic energy isn't transferred to internal energy when the pool balls collide?

Frank: Well, it's not like the pool balls get really hot, like a brake would when you apply it to slow down.

Jim: And it's not like the pool balls deform, and the arrangement of the particles inside them gets messed up.
Joe: Yeah, I think you might be right. The collision's elastic, right? And energy must be conserved. Before, there's kinetic energy. After there's kinetic energy. if the change in internal energy is minimal, we can say that there's the same amount of kinetic energy before and after the collision.

Frank: So, momentum is conserved - that's one equation.
Jim: And the kinetic energy's the same before and after because the collision is elastic - that's a second equation!

Joe: And both of the equations have the pool balls' velocities in
them, so we can use the two equations to solve the problem!

Momentum is
 conserved in an inelastic collision.

 one you can't get the values of two

Energy conservation gives you the second equation that you need!

The pool balls hit each other in an elastic collision. This means that their internal energies don't increase significantly as a result of the collision, because they don't deform in any way (unlike the football players, whose padding deforms and doesn't bounce back when they collide).

Since the internal energy doesn't change, this means that the total kinetic energy of the two pool balls is the same before and after the collision. This gives you a second equation you can use.

If you have two equations (momentum conservation and kinetic energy before and after the collision) you can work out two unknowns - the final velocities of the two pool balls.

Momentum conservation:

Sharpen your pencil

This means that $v_{20}=0$, which should simplify the problem a bit.

Two pool balls both have the same mass, m. A moving ball, velocity \mathbf{v}_{10} hits a second, stationary, ball head on. After the collision, the first ball has velocity $\mathbf{v}_{1 f}$ and the second $\mathbf{v}_{2 f}$
a. Write down an equation showing that momentum is conserved.
b. Write down an equation showing that kinetic energy is conserved.
c. Eliminate the variable $\mathbf{v}_{2 f}$ by rearranging your equation from part a. and substituting it into your equation from part b, so that you only have one unknown, $\mathbf{v}_{1 \mathrm{f}}$.
d. Multiply out the parentheses and simplify your new equation as much as you can. (Don't worry if you can't find a way to make it say " $\mathbf{v}_{1 f}=$ something" yet - we'll do that on the next page.)

This means that $v_{20}=0$, which should simplify the problem a bit.

Two pool balls both have the same mass, m. A moving ball, velocity \mathbf{v}_{10} hits a second, stationary, ball head on. After the collision, the first ball has velocity $\mathbf{v}_{1 f}$ and the second $\mathbf{v}_{2 f}$
a. Write down an equation showing that momentum is conserved.

$$
m v_{10}+0=m v_{1 f}+m v_{2 f}
$$

b. Write down an equation showing that
kinetic energy is conserved.

$$
1 / 2 m v_{10}{ }^{2}+0=1 / 2 m v_{1 f}{ }^{2}+1 / 2 m v_{2 f}{ }^{2}
$$

$\curvearrowleft_{v_{20}}=0$, so it doesn't appear in either equation.
c. Eliminate the variable $\mathbf{v}_{2 f}$ by rearranging your equation from part a. and substituting it into your equation from part b, so that you only have one unknown, $\mathbf{v}_{1 f}$. All terms are multiplied
(b) by $1 / 2 m$, so you can divide
it out and cancel it.
d. Multiply out the parentheses and simplify your new equation as much as you can. (Don't worry if you can't find a way to make it say " $\mathbf{v}_{1 f}=$ something" yet - we'll do that on the next page.)

$$
\begin{aligned}
& v_{10}^{2}=v_{1 f}^{2}+\left(v_{10}-v_{1 f}\right)^{2} \\
& v_{10}^{2}=v_{1 f}^{2}+v_{10}^{2}-2 v_{10} v_{1 f}+v_{1 f}^{2}
\end{aligned}
$$

$$
\text { There's a } v^{2}{ }^{2} \text { on each side, so it can be }
$$ subtracted from both sides and canceled.

You can divide every term in the equation by 2 .

So I end up with this ... this thing $v_{1 f}^{2}-v_{10} v_{1 f}=0$ that I'm supposed to rearrange to say " $v_{1 f}=$ something". But how am I gonna do that?!
This is the equation where all the terms with $v_{\text {p }}$ in them are on the left hand side.

> If $\mathrm{xy}=0$ then either x or y (or maybe both) MUST be 0 .

Factoring your equation will help.

Factoring can also be called factorising.

If rearranging your equation to say " $\mathbf{v}_{1 \mathrm{f}}=$ something" is difficult, then factoring it is another way of trying to solve it. Factoring involves spotting where you can put in some parentheses - it's basically the reverse of multiplying out parentheses.
If two things multiplied together $=$ zero, then at least one of the things must be zero. For example, if you have $x y=0$, then either x or y (or perhaps both) must be 0 . You have a zero on the right hand side of your equation, $\mathbf{v}_{1 \mathrm{f}}{ }^{2}-\mathbf{v}_{10} \mathbf{v}_{\mathrm{lf}}=0$.
So if you can factor the left hand side of your equation so that it consists of two things multiplied together, you can say for sure that one of them must be zero. You can work out from the context which of them actually is zero.

$$
\begin{aligned}
& m v_{10}=m / v_{1 f}+m / v_{2 f} \leftarrow \text { (a) } \quad 1 / 2 m v_{10}{ }^{2}=1 / 2 m v_{1 f}{ }^{2}+1 / 2 m v_{2 f}{ }^{2} \\
& v_{10}=v_{1 f}+v_{2 f} \quad \text { All terms are multiplied } \\
& v_{2 f}=v_{10}-v_{1 f} \text { it out and cancel it. } \\
& v_{10}{ }^{2}=v_{1 f}{ }^{2}+v_{2 f}{ }^{2} \\
& \text { Substitute this into (b). } \\
& >v_{10}{ }^{2}=v_{1 f}{ }^{2}+\left(v_{10}-v_{1 f}\right)^{2}
\end{aligned}
$$

Factoring involves putting in parentheses

The terms $a b$ and $a c$ both have an ' a ' in them that everything else in the term is multiplied by. Because of this, the ' a ' is called a common factor, because it is common to both terms.

You can factor your terms by moving the common factor outside a set of parentheses So $a b+a c$ becomes $a(b+c)$.

If you have the equation $a(b+c)=0$ then either $a=0$ or $(b+c)=0$. This is because if two things multiplied together $=0$ then one (or both) of the things must be zero.

If more than one term has the same variable multiplying everything else in the term, you can factor your equation.

Sharpen your pencil

a. In your equation $\mathbf{v}_{1 f}{ }^{2}-\mathbf{v}_{10} \mathbf{v}_{1 f}=0$, which variable appears in both terms, so that everything else in the term is multiplied by it?
b. If you have parentheses, you can multiply them out, e.g. $a(b+c)=a b+a c$. The terms $a b$ and $a c$ both have the common factor ' a ' in them which everything else in the term is multiplied by.

Use this information to write your equation $\mathbf{v}_{1 \mathrm{f}}{ }^{2}-\mathbf{v}_{10} \mathbf{v}_{1 \mathrm{f}}=0$ in a form where the left hand side is a single term that involves parentheses.
c. If two things multiplied together $=0$ then one or both of the things must be zero. Use this fact to calculate two values that $\mathbf{v}_{1 f}$ may have, then use the context to explain which value you think is correct.
a. In your equation $\mathbf{v}_{1 f}{ }^{2}-\mathbf{v}_{10} \mathbf{v}_{1 f}=0$, which variable appears in both terms, so that everything else in the term is multiplied by it?
The variable $v_{\text {If }}$ appears in both terms.
b. If you have parentheses, you can multiply them out, e.g. $a(b+c)=a b+a c$. The terms $a b$ and $a c$ both have the common factor ' a ' in them which everything else in the term is multiplied by.

Use this information to write your equation $\mathbf{v}_{1 f}{ }^{2}-\mathbf{v}_{10} \mathbf{v}_{1 f}=0$ in a form where the left hand side is a single term that involves parentheses.

$$
\begin{aligned}
& v_{1 f}^{2}-v_{10} v_{1 f}=0 \\
& v_{1 f}\left(v_{1 f}-v_{10}\right)=0
\end{aligned}
$$

c. If two things multiplied together $=0$ then one or both of the things must be zero. Use this fact to calculate two values that $\mathbf{v}_{1 f}$ may have, then use the context to explain which value you think is correct.
Either $v_{\text {If }}=0$ or $\left(v_{1 f}-v_{10}\right)=0$
If $\left(v_{1 f}-v_{10}\right)=0$ this means that $v_{1 f}=v_{10}$, in other words, the Ist pool ball has continued at its original velocity as if it hadn't hit the other one. This is impossible.
The other possible solution is $V_{j f}=0$. This looks right, as when you hit a pool ball straight at another, the first ball often stops.

You can deal with elastic collisions now

Momentum is always conserved in any collision, whether it's inelastic or elastic. Energy is always conserved as well - but if the collision is inelastic, some is transferred as internal energy. If the collision is elastic, then the total kinetic energy is conserved.

For any collision, use

 momentum conservation first. If the collision is elastic and you have two unknowns, use kinetic energy as well.A rule of thumb is that any collision that involves an object being deformed in some way is inelastic, as the molecules in the object have been rearranged, which increases the internal energy of the object.

If you have a problem involving an elastic collision, you should always use momentum conservation. If you only have one unknown, then you're done.

If you have two unknowns, you can use energy conservation to give you a second equation that helps you to work out both unknowns.

In an elastic collision, the relative velocity reverses

You've worked out that when one pool ball hits a stationary pool ball head-on, the first pool ball stops and the second pool ball continues with the velocity that the first ball had.

Imagine sitting on top of the second pool ball. You see the first pool ball coming towards you with velocity \mathbf{v}_{10}. After the collision, it appears to you that the first pool ball is moving away from you with velocity $-\mathbf{v}_{10}$ (though it's actually the second ball that is moving).

This also works in the opposite direction. If the relative velocity of the objects is reversed after the collision, then the collision must have been elastic.

Balls are moving TOWARDS each
other with relative velocity of v_{10}.

Before

(m) $\mathbf{v}_{20}=0$

After

This is a special case of a general rule for elastic collisions - the relative velocity of the two objects is reversed after the collision. This is also true if both objects were originally moving.

Q:If a collision is elastic, do I always have to use momentum conservation AND energy conservation?

A:: Not always. Sometimes you'll only start off with one unknown. Then you'd only need to use one equation.

Q:If I only have one unknown velocity, which equation is it better for me to use - momentum conservation or energy conservation?
A: : It's better to use momentum conservation, because direction is important. and the momentum conservation equation tells you the direction of the velocity as well as its size, as momentum is a vector.

Q:- Does the kinetic energy equation tell me the direction of the velocity too?

A :No, because kinetic energy is a scalar. An object of a certain mass will always have the same kinetic energy

Q:Can't I get the velocity's direction from the kinetic energy equation?

A:: Kinetic energy, $K=1 / 2 m v^{2}$. The velocity is squared. If you multiply two positive numbers together, you get a positive number. And if you multiply two negative numbers together, you also get a positive number.

So whether v is positive or negative (an indication of direction), \mathbf{v}^{2} will always be positive. This means that you can't work out the direction of the velocity (a vector) from the kinetic energy (a scalar) - though you can work out its size.

Q:. In the problem I just did over there, there were two possible answers at the end. How do I pick between them?
A : : The reason there were two possible answers is because the kinetic energy conservation equation involves \mathbf{v}^{2}. You then have to pick between them by thinking about the ' k 'ontext of the problem. Choose the answer that makes the most physical sense.

Q: What if the collision happens at an angle, instead of along a straight line?

A:: The rule of thumb is always to use momentum conservation first. Break down the velocities you're given into components then apply momentum conservation for each component (like you did in chapter 12).

Q:Does the relative velocity always reverse in an elastic collision even if the objects have different masses?

A:: Yes. For example, a rubber ball hitting a wall with velocity \mathbf{v} will rebound with velocity -v (assuming that the collision is completely elastic). And any two objects with less extreme masses will also have their relative velocity reversed after a collision.

The pool ball collisions work!

The programmer writes the elastic pool ball collisions into the game, exactly like you describe - and they work!

But a few days before the game is due to be released, he's back with a tricky problem ...

The game also has a trick shot mode, which uses some odd items you wouldn't usually see on a pool table. The programmer's stuck on one particular trick shot where the cue ball is hit into a padded 'bucket', which then swings up and releases the cue ball - as long as it reaches exactly the right height at the top of its swing $(6.00 \mathrm{~cm})$.

Where is the problem with the programmer's reasoning?

The programmer's been using what you taught him about energy conservation to work out the speed the player should hit the ball with.

He's assumed that the initial kinetic energy of the ball is being transferred to the final potential energy of the ball and bucket, which wind up 6.00 cm higher than they started (a problem that would be very very difficult to do using forces and equations of motion!)

However, the velocity he's calculated is lower than a 'play tester' pool player has to hit the ball with to do the trick in real life. The real pool player needs to hit the ball with a higher velocity - and the programmer doesn't know why.

Sharpen your pencil

Your job is to work out what's going wrong. The programmer's math is to the right and there's space for you to write down what might be going wrong.

The ball has a mass of 165 g and the bucket is 95 g .

So the ball's kinetic energy becomes potential energy ... and I have to allow for the mass of the ball + bucket being more than just the mass of the ball. But why's the answer coming out wrong?!
(I)

$$
\begin{aligned}
& \longrightarrow \\
& m_{1}=0.165 \mathrm{~kg} \\
& v_{1}=?
\end{aligned}
$$

> (2) \square
> $m_{2}=0.260 \mathrm{~kg}$
> $v_{2}=0 \mathrm{~m} / \mathrm{s}$
> Height $=0.060 \mathrm{~m}$

K of ball at (1) $=U$ of ball and bucket at (2)
Use energy conservation

$$
\begin{aligned}
& K=1 / 2 m_{1} v_{1}^{2}=m_{2} g h \\
& v_{1}^{2}=\frac{2 m_{2} g h}{m_{1}} \\
& v_{1}=\sqrt{\frac{2 m_{2} g h}{m_{1}}}=\sqrt{\frac{2 \times 0.260 \times 9.8 \times 0.060}{0.165}} \\
& v_{1}=1.36 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

But the real pool player doing the trick shot in real life has to hit the ball with a higher velocity than this - and I don't know why! Argh!

Sharpen your pencil
 Solution

Your job is to work out what's going wrong. The programmer's math is to the right AND There's space for you to write down what might be going wrong.

The ball has a mass of 165 g and the bucket is 95 g .
The programmer has assumed that all of the pool ball's kinetic energy is transferred to potential energy.

However, the bucket is padded. This means that the pool ball colliding with it is an inelastic collision, so mechanical energy isn't conserved.

When the pool ball hits the bucket, the padding in the bucket deforms and its internal energy increases. So not all of the ball's kinetic energy is transferred to potential energy.

This is consistent with the real pool player having to hit the ball faster.
(I)

$$
\begin{aligned}
& \longrightarrow \\
& m_{1}=0.165 \mathrm{~kg} \\
& v_{1}=?
\end{aligned}
$$

(2) \square
$=0.260 \mathrm{~kg}$
$v_{2}=0 \mathrm{~m} / \mathrm{s}$
Height $=0.060 \mathrm{~m}$
K of ball at (1) $=U$ of ball and bucket at (2) Use energy conservation

$$
\begin{aligned}
& K=1 / 2 m_{1} v_{1}^{2}=m_{2} g h \\
& v_{1}^{2}=\frac{2 m_{2} g h}{m_{1}} \\
& v_{1}=\sqrt{\frac{2 m_{2} g h}{m_{1}}}=\sqrt{\frac{2 \times 0.260 \times 9.8 \times 0.060}{0.165}} \\
& v_{1}=1.36 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

But the real pool player doing the trick shot in real life has to hit the ball with a higher velocity than this - and I don't know why! Argh!

The initial collision is inelastic - so mechanical energy isn't conserved

When the ball hits the padded bucket, some of its kinetic energy is transferred to the bucket as internal energy. The collision is inelastic. The bucket is padded ,so the mechanical energy of the system is reduced as the internal energy of the bucket increases due to the padding deforming.

Therefore, the programmer's assumption that the ball's initial kinetic energy will all be transferred to gravitational potential energy is incorrect.

> Before you do any math, think: "Is this collision elastic or inelastic?"

Use momentum conservation for the inelastic part

The trick with this trick shot is thinking about it in two stages.
The first stage is when the cue ball collides with the padded bucket. This is an inelastic collision, so momentum is conserved but mechanical energy isn't. As you know the masses of the ball and bucket, you can use momentum conservation to calculate their new velocity (and hence their kinetic energy) in terms of the cue ball's initial velocity.
The second stage is when the bucket containing the ball swings up. This involves the kinetic energy of the ball and bucket being transferred to potential energy. As you know the height that the bucket swings, you can work out its potential energy - and hence the kinetic energy and velocity of the ball and bucket - and hence the initial velocity of the cue ball.

Now it's your turn!

Sharpen your pencil

A pool ball, mass 165 g , is played into a padded bucket, which is arranged so it can swing upwards on the end of some light steel wires. For the shot to work, the ball must be struck so that the top of the bucket's swing is 6.00 cm higher than it started.

Find the velocity that the ball must be struck with if the bucket has a mass of 95 g .

Sharpen your pencil

Solution

A pool ball, mass 165 g , is played into a padded bucket, which is arranged so it can swing upwards on the end of some light steel wires. For the shot to work, the ball must be struck so that the top of the bucket's swing is 6 cm higher than it started.

Find the velocity that the ball must be struck with if the bucket has a mass of 95 g .
(I)

$$
v_{1}=?
$$

(2)
$m_{2}=0.260 \mathrm{~kg}$
$v_{2}=$?
$m_{2}=0.260 \mathrm{~kg}$

$$
v_{3}=0 \mathrm{~m} / \mathrm{s}
$$

Height $=0.060 \mathrm{~m}$

To get a velocity in m / s make sure you work in kg and m , not g and cm .

\checkmark
K of ball and bucket at (2) $=U$ of ball and bucket at (3)
Use energy conservation to get v_{2}.
This is different from the programmer's math, as the ball is already in the bucket $K=1 / 2 m_{p_{2}}{ }^{2}=m_{2} g h \quad$ before you do the energy conservation part. $v_{2}=\sqrt{2 g h}=\sqrt{2 \times 9.8 \times 0.060}=1.08 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})$

Use momentum conservation to get v_{i}.

$$
\begin{aligned}
m_{1} v_{1} & =m_{2} v_{2} \\
v_{1} & =\frac{m_{2} v_{2}}{m_{1}}=\frac{0.260 \times 1.08}{0.165}=1.70 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

there are no

Dumb Questions

Q:
So sometimes I can't just use energy conservation to do a problem?

A:
That's right - if the internal energy increases in a way that's very difficult to measure (like when padding is deformed) then you know that energy is conserved, but aren't able to do calculations with it!

QDoes that mean there's a way that the internal energy can change that is easy to quantify?! Surely you can't see what's going on inside an object!
A: If the internal energy increases as a result of work being done entirely against friction, then the change in internal energy is equal to $F \Delta x$, the total quantity of energy transferred as a result of doing work against friction.

QWhat do I do if I can't calculate the increase in internal energy?

A:You need to use momentum conservation to deal with inelastic collisions. This will give you the velocity after the collision - after the inelastic deformation has taken place. It's this velocity that you should use to calculate the kinetic energy that remains in the system.

Question Clinic: The "Ballistic pendulum" Question

This is a buzzword that may mean 'elastic collision' depending on what it collides with!

This is a buzzword that means 'inelastic collision'.

You can't use mechanical energy conservation for an inelastic collision, so you need to use momentum conservation for this part

This means that you don't have to take the mass of the wires into account in your calculation.
3. A pool ball, mass 165 g , is played into a padded bucket, which is arranged so it can swing upwards on the end of some light steel wires. For the shot to work, the ball must be struck so that the top of the bucket's swing is 6.00 cm higher than it started.
Find the velocity that the ball must be struck with if
 Some of the ball's initial kinetic energy will be transferred to internal energy.

A difference in height
should get you thinking
about energy conservation. the bucket has/anass of 95 g .

Find the kinetic energy of the ball and bucket after the collision, since that is what is transferred to potential energy. And to do this, you must first use momentum conservation to work out the initial velocity of the ball.

Kinetic energy

Internal energy

Mechanical energy

Power

Inelastic collision

Elastic collision

The capacity something has to do work due to its speed.

The total kinetic and potential energy due to the random motion or vibration of particles on a mic roscopic scale

The total kinetic + potential energy of a system on a macroscopic scale.

The rate at which energy is transferred or work is done. Measured in Watts (1 W = 1 J oule per second).

A collision where momentum is conserved but kinetic energy is not conserved.

A collision where both momentum and energy are conserved

Momentum vs kinetic energy

You calculate the change in momentum by thinking about a force applied for a period of time. You calculate the change in kinetic energy by thinking about a force applied for a displacement.

Inelastic collision

A collision is inelastic if one or both of the objects involved deform in some way, or if the objects stick together.
Momentum is conserved, but kinetic energy isn't conserved because the deformation of the object increases its internal energy.

Difference in height

Any time a problem involves a difference in height, it's almost always easier to deal with it using energy conservation than with equations of motion.
The total energy is the same at the start and the end, so any change in potential energy will be accompanied by an equal change in kinetic energy.

Elastic collision

A collision is elastic if neither object is deformed, and the objects bounce off of each other.
Mathematically, elastic collisions can be harder to deal with than inelastic collisions, as you still have two separate objects at the end. However, both momentum and kinetic energy are conserved, which gives you two equations you can use to find two unknowns.

Stopping an object

A quick way to determine the force required to stop an object at a certain displacement is to calculate its kinetic energy.
This is equal to the work you need to do against friction to stop it. As work $=F \Delta x$, this allows you to find the force quickly.

15 tension, pulleys and problem solving * Changing direction
 *

Sometimes you need to deal with the tension in a situation

So far, you've been using forces, free body diagrams and energy conservation to solve problems. In this chapter, you'll take that further as you deal with ropes, pulleys, and, yes, tension. Along the way, you'll also practice looking for familiar signposts to help navigate your way through complicated situations.

It's a bird... it's plane... ...no, it's... a guy on a skateboard?!

A new high-risk sporting event has come to town. The challenge? Jump off an 11.0 m pier and hit a target floating in the sea 15.0 m from the foot of the pier. Michael, a daredevil and skateboarding fiend, plans to take home the first place prize.

Michael wants to give himself a predictable launch velocity so he can be sure of hitting the target in the water. He's attached a skateboard to one end of a rope, put a large stack of masses at the other end, and placed a pulley in between.
The problem is, Michael's not so great at physics. And that's where you come in... can you help Michael out?

Skateboard is pulled along the pier by the rope.

The competition takes place when the tide is in and the sea is 11.0 m below the top of the pier.

When the skateboard reaches
Here's what SHOULD happen...
the end of the pier, Michael
continues with velocity v .

Always look for something familiar

This problem involves a skateboard, a person, a stack of masses, a rope, a pulley, gravity, the height of the pier, and the distance to the target. Plus it takes place in two dimensions. It's a complicated problem!

But you don't have to start the problem in the same place as Michael, with the rope, pulley and stack of masses. The best place for you to start tackling a problem is from a point where it looks like something you've seen before....

You can start at the point where Michael flies through the air with velocity \mathbf{v}. That looks kinda familiar...

> Break down a complicated problem into smaller parts, then look for something that's LIKE what you've seen before.
\qquad

Suppose Michael is launched horizontally from the end of a pier. What velocity does he need to possess in order to hit a target in the water 15.0 m from the foot of the pier, which is 11.0 m high?

Always start with a sketch to help you
figure a
problem out.

This part of the problem uses equations of motion. The key to solving it is to realize that you can do it separately from the rest of the problem, before you know anything about the stack of masses or the pulley.
Suppose Michael is launched horizontally from the end of a pier. What velocity does he need to possess in order to hit a target in the water 15.0 m from the foot of the pier, which is 11.0 m high?

Down is positive direction.

Get time from vertical components:

$$
x_{v}=x_{0 v}+v_{v} t+1 / 2 a t^{2} \quad \begin{aligned}
& \text { These terms } \\
& \text { are both zero. }
\end{aligned}
$$

$$
\Rightarrow 1 / 2 a t^{2}=x_{v}
$$

$$
\Rightarrow \quad t=\sqrt{\frac{2 x}{a_{v}}}=\sqrt{\frac{2 \times 11.0}{9.8}}=1.50 \mathrm{~s}(3 \mathrm{sd})
$$

Get horizontal velocity from horizontal components:

$$
v_{o h}=\frac{x_{h}}{t}=\frac{15}{1.50}=10.0 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \text { left to right. }
$$

So if Michael's velocity

 is $10 \mathrm{~m} / \mathrm{s}$, he hits the target, right?Jim: Yeah, and we've got that stack of weights on the other end of the rope to accelerate him with.

Frank: Yeah, the stack is falling, so it will accelerate at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ and drag Michael along behind it. So Michael accelerates at $9.8 \mathrm{~m} / \mathrm{s}^{2}$, just like the stack. This is gonna be a piece of cake!

Joe: Um, I'm not so sure about that. The stack has to pull Michael along, so I don't think the stack will fall as fast as it would if it wasn't attached to the skateboard. I don't think it would accelerate at $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Frank: But if something's falling, its acceleration doesn't depend on its mass. Everything falls at the same rate, no matter what its mass is (as long as air resistance isn't a big factor).
Joe: But Michael isn't falling - he's travelling horizontally.

Jim: Oh yeah ... I guess if there was an elephant on the skateboard instead, the board would hardly accelerate at all.

Frank: Yeah, the force is due to the weight of the falling stack - but not Michael's weight, as he isn't falling.

Joe: This isn't so straightforward after all.

BE the skater - SOLUTTON

Your job is to imagine yourre Michael on the skateboard. What happens to you as the mass at the other end of the rope falls? How will making the mass larger or smaller affect what happens to you?

The mass pulls you in this direction.

If there was no mass here, you wouldn't go anywhere at all.

A larger mass accelerates more rapidly.

As the mass falls vertically, I accelerate horizontally because it pulls the skateboard. If the mass is larger ! accelerate more quickly:
If the mass is smaller, I accelerate more slowly, and if the mass is a really small! I might not accelerate at all.

Michael and the stack accelerate at the same rate

Michael and the stack are joined together by the rope, so they both accelerate at the same rate. This is because of the tension in the rope - the rope is pulled tight. If the rope wasn't there or wasn't pulled tight, there would be no tension and Michael wouldn't accelerate as the stack falls.

A stack with a larger mass on it will accelerate Michael more rapidly, and a smaller mass will accelerate him more slowly. This is something you can analyze by thinking about the tension in the rope.

A rope pulled tight can mediate a TENSION force.

The pulley changes the direction that the tension force acts in.

If a rope experiences a pulling force at both ends that makes it tight (like the rope we have here) it's said to be in tension.
But a pulley changes the direction that the tension force acts in. The pulley is able to do this because it's firmly attached to the pier, which is able to provide a support force. Otherwise, the rope would just get pulled straight.
If you just draw the free body diagrams for Michael and the stack, it looks like you have a Newton's 3rd Law force pair that isn't acting in opposite directions. But when you include the free body diagram of the pulley, you can see that there are horizontal and vertical pairs of tension force pairs.

The forces on the pulley must add to zero, as the pulley isn't accelerating. With no support force, the pulley would accelerate in this direction as the rope pulls straight..
Because the rope is being pulled tight, it exerts a force on the pulley. But the pulley's not accelerating, so the net force on it must be zero. Therefore, the pier that the pulley's attached to must provide a support force.

Q:
Why doesn't the stack just accelerate at $9.8 \mathrm{~m} / \mathrm{s}^{2}$, like it usually would if you dropped it?
A:
: It's attached to Michael (and his skateboard) by a rope. So the force of the stack's weight has to accelerate Michael's mass as well as the stack's own mass.

Q:
But don't all falling objects accelerate at the same rate, whatever their mass?
A:
: Not if they're tied on to something else that isn't falling!

Q:
So where does tension come in?

A:
: Tension is the name given to the force exerted at each end of a rope. For example, if the stack was hanging from a rope attached to the ceiling, the tension would be the same size as the stack's weight.

Q:
Is the tension in a rope always the same size as the weight of the object it's supporting?
A: If an object is hanging straight down from a rope, then its acceleration is zero and the net force must be zero. So the tension in the rope must be the same size as the object's weight (in the opposite direction).
But if the object is accelerating downwards, (like the stack is here), the object's weight must be greater than the tension in the rope to produce a net downwards force.

Q:Is it OK to think of a tension force a bit like the normal force in other problems - as it's a support force?
A: : As long as you remember that the tension always acts in the direction of the rope, that should be OK conceptually.

Q:Do I have to take into account the mass of the rope as well?
A :
: Great question! In real life you would, but in practice the mass of the rope has very little effect if it's much smaller than the masses it's attached to. So we're making the approximation that the rope is massless.

$Q:$How do you know that the two objects attached to the rope both accelerate at the same rate?
A: : If the two objects are at either end of a rope which is pulled tight, they must always move with the same speed in order for the rope to remain tight. Therefore, they must also both accelerate at the same rate (though they may accelerate in different directions depending on how the rope is positioned).

> When two objects are joined together and move together, they both accelerate at the SAME rate.

Use tension to tackle the problem

Because the stack and Michael are joined together by a rope under tension, they both accelerate at the same rate You need to work out what mass the stack should have in order for both it and Michael to be going at $10.0 \mathrm{~m} / \mathrm{s}$ after the stack has fallen 11.0 m from the top to the bottom of the pier.

If you draw separate free body diagrams for the stack and for Michael, showing all the forces acting on them, you can use these to work out the mass of the stack.

I guess we need to be careful about how we define the directions of our forces?

Think about how the rope moves.

When you're using a pulley, with forces mediated by the tension in a rope, you have to be very careful about defining the direction of your force vectors.
As the objects are connected to each other by the rope, it's best to define one direction of rope movement as the positive direction, draw the free body diagram for each object separately, and mark the positive direction on each free body diagram with a big arrow.

Make sure your 'positive direction' arrow is a different style from your force vector arrows.

Define one

 direction of rope movement as positive and mark it on your free body diagrams.
Sharpen your pencil

Michael on a skateboard, mass M, is attached via a rope and a pulley to a stack of masses, mass m, as shown in the picture. When the stack is allowed to accelerate downwards in a gravitational field, strength \mathbf{g}, the rope has tension, \mathbf{T} and Michael also accelerates.
a. Draw separate free body diagrams of Michael on the skateboard and of the stack
b. Write down the size of the net force on Michael.
c. Write down the size of the net force on the stack.
d. Michael and the stack both accelerate with acceleration, a. Use Newton's 2nd Law to write down a separate expression for each of them that relates their mass, their acceleration and the net force on them.
e. The size of the tension in the rope is the same for both Michael and the stack. Make a substitution using your equations from part d. and rearrange your answer so that you have an equation for m, the mass of the stack, in terms of M, \mathbf{g} and \mathbf{a}.

Sharpen your pencil
 Solution

Michael on a skateboard, mass M, is attached via a rope and a pulley to a stack of masses, mass m, as shown in the picture. When the stack is allowed to accelerate downwards in a gravitational field, strength \mathbf{g}, the rope has tension, \mathbf{T} and the man also accelerates.

a. Draw separate free body diagrams of Michael on the skateboard and of the stack.
(

b. Write down the size of the net force on Michael.
c. Write down the size of the net force on the stack.

1
Normal force and weight add to zero.

Drawing on the big arrows helps you get the signs correct in these equations.
d. Michael and the stack both accelerate with acceleration, a. Use Newton's 2nd Law to write down a separate expression for each of them that relates their mass, their acceleration and the net force on them.

Stack has mass m.
Make substitutions.

e. The size of the tension in the rope is the same for both Michael and the stack. Make a substitution using your equations from part d. and rearrange your answer so that you have an equation for m, the mass of the stack, in terms of M, \mathbf{g} and \mathbf{a}.

$$
\begin{align*}
& T=M a \quad \text { (I) } \\
& m g-T=m a \tag{2}\\
& \text { Substitute the expression for } \\
& T \text { in (1) into (2) } \\
& m g-M a=m a \\
& \text { Both the } g \text { and the a } \\
& \text { are multiplied by the } m \text {. } \\
& \text { Rearrange equation to say " } m=\ldots \text { " } \\
& m g-M_{a}=m a \\
& m g-m a=M a \\
& m(g-a)=M a \\
& \begin{array}{l}
m=\frac{M a}{9-a} \\
\text { So you can introduce some, }
\end{array} \\
& \text { Then you can divide } \\
& \begin{array}{l}
\text { both sides by }(g-a) \\
\text { to get " } m=\ldots \text { " }
\end{array} \\
& \text { - So you can introduce some } \\
& \text { parentheses so that there's only one } \\
& \text { instance of } m \text { on the left hand side. }
\end{align*}
$$

If the parallel component of Michael's weight vector is larger than the stack's weight vector, he'll roll backwards!

Thinking about the tension in the rope helps you to understand the physics.

If you're able to draw free body diagrams for problems that involve ropes and tension, you'll be able to solve any problem, not just this one.

For example, if Michael was being pulled up a ramp by the stack instead of being pulled horizontally, you'd have to think about Michael's weight vector as well. The only way of using forces and Newton's 2nd Law to deal with that is to draw a free body diagram for each object attached to the rope - which is fine if you understand the physics.

Treating both objects as one single mass works here (but NOT always).

On this occasion, you can also treat Michael and the stack as one object with mass $(M+m)$ that's accelerated by the force $m \mathbf{g}$ (the weight of the stack). You'd write down:

Force $=$ mass \times acceleration

$$
m \mathbf{g}=(M+m) \mathbf{a}
$$

When you rearrange this, you get the same equation as over there: $m=\frac{M \mathbf{a}}{\mathbf{g - a}}$
that will always work. This problem is a special case.

If you're analyzing a problem with ropes and pulleys using forces, ALWAYS start with individual free body diagrams, have a go at BEING each object, and go on from there.

Free body diagram
for the stack is still the same - but the tension will be a different size because Michael's on a slope.

So we've got it! We've got

 an equation for the mass of the stack we can use.Frank: Right. All we need to do it to put the numbers into it:

$$
\text { Mass of stack. }{ }_{m}=\frac{M \mathbf{a}}{\mathbf{g - a}} \quad \begin{aligned}
& \text { Mass of Michael } \\
& \text { and skateboard. }
\end{aligned}
$$

Jim: Yeah, I just asked Michael, and he says that him plus the skateboard come to 80.0 kg , so we can put that in instead of M. And we already know that $\mathbf{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Joe: But what about a, the acceleration. We don't know that.
Frank: Can't we just put in $\mathbf{a}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ like we usually do?
Joe: Not this time! The force of the stack's weight has to accelerate both the stack's mass and Michael's mass. So the stack won't accelerate as quickly as it would if it was just falling on its own.

Jim: So we gotta work out a value for the acceleration first, before we can get a value for the mass. How are we gonna do that?

Joe: Well, there is the sketch we did earlier ...

Jim: Can we just write things like $\mathbf{v}_{0}, \mathbf{v}$ and \mathbf{x} on it, and use equations of motion to calculate \mathbf{a} ?
Frank: Oh yeah! I've been getting so wrapped up into working with masses and forces that I forgot we could just look at Michael's velocity, displacement and acceleration, without going into all the reasons behind them.
Joe: Cool, let's do it!

Look at the big picture as well as the parts

Right at the start, you broke down this complicated problem into two parts:

1. Work out the velocity Michael needs at the end of the pier to hit the target. You did this first because it involved equations of motion, and a scenario similar to others you'd seen before.

2. Work out what mass the stack needs to be for him to reach this velocity at the end of the pier. You've just used free body diagrams and Newton's 2nd Law to come up with an equation for the mass of the stack, $m=\frac{M \mathbf{a}}{\mathbf{g - a}}$

But now you've discovered that there's another part to this problem! You need to work out a value for the acceleration of Michael and the stack. The important thing is not to panic, and to step back and look at the big picture.

Then you'll see that you can use your equations of motion to calculate the acceleration. Once you have a value, you can calculate the mass of the stack, which is what you really want to know.

Though do be careful with how you define the variables you use.

Michael is to be launched horizontally from the end of a 11.0 m high pier with a velocity of $10.0 \mathrm{~m} / \mathrm{s}$. He stands on a skateboard, which is attached via a rope and pulley to a stack of masses that falls vertically downwards. Michael and the skateboard have a combined mass of 80.0 kg .
a. If Michael reaches the edge of the pier at the same time as the stack hits the water, what is his displacement?
b. Calculate Michael's acceleration.
c. Use the equation $m=\frac{M \mathbf{a}}{\mathbf{g - a}}$ that you worked out before to calculate the mass that the stack needs to be in order to produce this acceleration. (The stack has mass m, Michael and his skateboard have mass M).

Sharpen your pencil Solution

Michael is to be launched horizontally from the end of a 11.0 m high pier with a velocity of $10.0 \mathrm{~m} / \mathrm{s}$. He stands on a skateboard, which is attached via a rope and pulley to a stack of masses that falls vertically downwards. Michael and the skateboard have a combined mass of 80.0 kg .
a. If Michael reaches the edge of the pier at the same time as the stack hits the water, what is his displacement?

The stack has fallen 11.0 m vertically.

> So Michael has travelled 11.0 m horizontally, towards the edge of the pier.
b. Calculate Michael's acceleration.

$$
\begin{aligned}
& \lll v_{a=2}^{0}=v_{0}^{2}+2 a\left(x-x_{0}\right) \\
& \text { But } v_{0}=0 \text { and } x_{0}=0 \text {. } \\
& \Rightarrow v^{2}=2 a x \\
& x_{0}=0 \mathrm{~m} \quad x=11.0 \mathrm{~m} \\
& v_{0}=0 \mathrm{~m} / \mathrm{s} \quad v=10.0 \mathrm{~m} / \mathrm{s} \Rightarrow a=\frac{v^{2}}{2 x}=\frac{10.0^{2}}{2 \times 11.0} \\
& a=4.54 \mathrm{~m} / \mathrm{s}(3
\end{aligned}
$$

c. Use the equation $m=\frac{M \mathbf{a}}{\mathbf{g - a}}$ that you worked out before to calculate the mass that the stack needs to be in order to produce this acceleration. (The stack has mass m, Michael and his skateboard have mass M).

$$
\begin{aligned}
& m=\frac{M_{a}}{9-a} \\
& m=\frac{80.0 \times 4.54}{9.8-4.54}=69.0 \mathrm{~kg}(3 \mathrm{sd})
\end{aligned}
$$

But the day before the competition ...

Michael's just been down to the venue to check it out - and he's discovered that the pier slopes up towards the sea at a slight angle. The angle is only $5.0^{\circ} \ldots$ but that might be enough to throw out your careful calculations. On the bright side, it levels out just at the end, so at least he's still taking off horizontally, and the end of the pier is still 11.0 m above the water.

On top of that, Michael's checked the skateboard website and found out that its wheels have a coefficient of friction, $\mu=0.0500$.

Your complicated problem just got a LOT more complicated.

Michael on his skateboard, with a total mass M, is attached to a stack of masses, total mass m, via a rope and pulley, as shown in the picture. The wheels of the skateboard have coefficient of friction, μ, and the pier slopes up towards the sea at angle θ from the horizontal.
a. Draw a free body diagram, showing all of the forces acting on Michael.

c. Outline what you would do to approach this problem. You don't need to do any math - just explain the process you'd go through.

Sharpen your pencil Solution

Michael on his skateboard, with a total mass M, is attached to a stack of masses, total mass m, via a rope and pulley, as shown in the picture. The wheels of the skateboard have coefficient of friction, μ, and the pier slopes up towards the sea at angle θ from the horizontal.
a. Draw a free body diagram, showing all of the forces acting on Michael.

c. Outline what you would do to approach this problem. You don't need to do any math - just explain the process you'd go through.
Use triangles to calculate the parallel component of Michael's weight, $F_{\| 1}$. Also calculate the normal force (equal to the perpendicular component of Michael's weight) and use it to calculate the friction force, as $F_{\text {fric }}=\mu F_{\text {normal }}$. The net force on Michael is parallel to the pier, $F_{\text {net }}=T-F_{11}+F_{\text {fric }}$. Then do $F_{\text {net }}=$ ma for both Michael and the stack. They both have the same acceleration so go on from there by substituting in for the tension, etc, similar to before.

That looks like a LOT of work! Is it worth looking for an easier way before we do all that math?

Before you decide to use forces, think about using energy conservation.

Any time you see a problem that involves a difference in height, you should look to see if it might be possible to use energy conservation instead of forces, like you did in chapter 14.

Using energy conservation to solve a problem involves fewer intermediate steps and less math than using forces. Which can only be a good thing!

If your problem involves a difference

in height, look
to see if you can use ENERGY CONSERVATION.

Using energy conservation is simpler than using forces

This is the kind of problem that lends itself to using energy conservation instead of forces, because it involves masses whose heights and velocities change, and work being done against friction.

The total energy of the system is always constant, and differences drive changes that lead to energy transfer. So if you spot the differences between the start (when you've just dropped the stack) and the end (when Michael has just launched horizontally from the skateboard) you'll know what to include in the energy conservation equation.

Spot the difference

a. Play "spot the difference" between the start and the end. Circle all the

b. Write down an equation to show that the total energy at the start and the end is the same. (You can use any symbols and subscripts you like, or write out the equation in words).
c. For each term in your energy conservation equation, write down in words or equations how you would go about calculating it.

-Spot the difference - SOLUTION

a. Play "spot the difference" between the start and the end. Circle all the differences between the two pictures and write down what they are.

1. Michael at top of incline
2. Michael's velocity $10.0 \mathrm{~m} / \mathrm{s}$.
3. Stack at bottom of pier.
4. Stack velocity $10.0 \mathrm{~m} / \mathrm{s}$.
5. Work has been done against friction.
b. Write down an equation to show that the total energy at the start and the end is the same. (You can use any symbols and subscripts you like, or write out the equation in words).
$E_{\text {nergy at start }}=$ energy at end $\Rightarrow u_{\text {stack }}=u_{\text {man }}+K_{\text {man }}+K_{\text {stack }}+W_{\text {friction }}$
c. For each term in your energy conservation equation, write down in words or equations how you would go about calculating it.
$U=$ mass $\times g \times h \quad$ Same method for To calculate $W_{\text {friction }}$ calculate normal force $K=1 / 2 \times$ mass $\left.\times v^{2}\right\}$ Michael and stack. using angle and weight and multiply this by μ, the coefficient of friction. This gives you the frictional force, $F_{\text {friction }}$.

Then $W_{\text {friction }}=F_{\text {friction }} \times$ displacement

By playing Spot the difference, we know that the potential energy that the stack has as a result of being 11.0 m higher at the start than it is at the end is transferred to:
\star The potential energy Michael gains by going up the incline.
\star The kinetic energy of Michael and the skateboard.
\star The kinetic energy of the stack.
\star The work done against the friction of the skateboard wheels.
It's time to put that all together ...

The easiest way
to do energy
conservation is
to play "spot the difference."

Sharpen your pencil

Michael on his skateboard, with a total mass of 80.0 kg , is attached to a stack of masses, total mass m, via a rope and pulley. The wheels of the skateboard have coefficient of friction, $\mu=0.0500$, and the board travels 11.0 m along a pier which slopes up towards the sea at angle $\theta=5.0^{\circ}$ from the horizontal as the stack goes 11.0 m straight down.
a. Calculate the difference in the height of Michael on the skateboard at the beginning and end of the pier.
b. Calculate the normal force exerted by the pier on Michael, and hence the work done against friction.

$$
F_{\text {frie }}=\mu F_{N}
$$

c. Michael needs to have a speed of $10.0 \mathrm{~m} / \mathrm{s}$ at the end of the pier. Use energy conservation to work out the mass that the stack needs to have in order to achieve this.

Sharpen your pencil Solution

Michael on his skateboard, with a total mass of 80.0 kg , is attached to a stack of masses, total mass m, via a rope and pulley. The wheels of the skateboard have coefficient of friction, $\mu=0.0500$, and the board travels 11.0 m along a pier which slopes up towards the sea at angle $\theta=5.0^{\circ}$ from the horizontal as the stack goes 11.0 m straight down.
a. Calculate the difference in the height of Michael on the skateboard at the beginning and end of the pier.

Were using a subscript here so $\quad h_{M}=0.959 \mathrm{~m}(3$ sd) that we don't get mixed up with the height of the pier. h_{M} is Michael's change in height.
b. Calculate the normal force exerted by the pier on Michael, and hence the work done against friction.

Normal force is same size as perpendicular component of weight.

Triangle Tip: sketch extreme angles

If you're not sure which angle in your force vector triangle corresponds to the angle of your slope, sketch a slope with a small angle, θ. Making this angle small

Now draw the force triangle. Draw on the weight pointing straight down. Then draw in the parallel and perpendicular components. It doesn't matter which way round you draw the components, as the triangle's sides will still be the same length.

Michael doesn't float in the air or disappear through the ground. So the perpendicular components of the forces acting on him must add to zero.

$$
\begin{aligned}
& \cos \left(5^{\circ}\right)=\frac{F_{\perp}}{M g} \ll \\
& \text { Use these tips } \\
& \Rightarrow F_{\perp}=m g \cos \left(5.0^{\circ}\right) \text { triangles right. }
\end{aligned}
$$

c. Michael needs to have a speed of $10.0 \mathrm{~m} / \mathrm{s}$ at the end of the pier. Use energy conservation to work out the mass that the stack needs to have in order to achieve this.

Energy at start = energy at end

$$
\begin{aligned}
& u_{\text {stack }}=U_{\operatorname{man}}+K_{\operatorname{man}}+K_{\text {stack }}+W_{\text {friction }} \\
& m g h=M g h_{M}+1 / 2 M v^{2}+1 / 2 m v^{2}+W_{\text {friction }}
\end{aligned}
$$

$$
\begin{aligned}
m\left(g h-1 / 2 v^{2}\right) & =M g h_{M}+1 / 2 M v^{2}+W_{\text {friction }} \\
m & =\frac{M g h_{M}+1 / 2 M v^{2}+W_{\text {friction }}}{\left(g h-1 / 2 v^{2}\right)}
\end{aligned}
$$

$$
m=\frac{(80 \times 9.8 \times 0.959)+\left(0.5 \times 80 \times 10^{2}\right)+430}{(9.8 \times 11)-\left(0.5 \times 10^{2}\right)}
$$

Introduce parentheses to leave one instance of m on the left hand side.

This is larger then the mass you calculated last time, when there was no incline and no friction, which makes sense.

Doing a problem a different way may involve different intermediate steps.

Earlier on, you used forces to work out what mass the stack would need to be for a flat pier with no friction. As this method involved Newton's 2nd Law, $\mathbf{F}_{\text {net }}=m \mathbf{a}$, the acceleration was important.
This time you used energy conservation.
You didn't need to calculate the acceleration, as you could get all you needed from the masses, differences in height and differences in velocity.

There goes that skateboard...

Michael's taken your advice, and he's off...
let's see how he does:

Success! Michael wins the competition - and is able to replace his soggy old skateboard with a sparkly new one.
15.0 m

BULLET POINTS

- When two objects are joined together by a rope that's pulled tight, they both accelerate at the same rate in the same direction that the rope moves in.
- The tension in a rope is the same at both ends.
- A mass won't accelerate at $9.8 \mathrm{~m} / \mathrm{s}^{2}$ when it falls if it is attached to another mass that isn't also falling with it.
- If you have more than one mass, draw a free body diagram for each ...
- ... but do also check to see if you can use energy conservation instead!
- Play "spot the difference" to make sure you spot all the differences that involve energy transfer before you write down any equations.

Problems with a punchbag

Geoff's Gym was becoming more and more popular - so much so that his customers were having to queue for each piece of apparatus. But being that popular also has its disadvantages - and many of Geoff's customers were talking of going somewhere more quiet once their current memberships had expired.

Five Minute Mystery

So Geoff brought in lots of new equipment - bikes, rowing machines, weights machines - some seriously complicated and expensive pieces of kit. But the item Geoff had the most problems with was the humble punchbag.
"I just don't know what went wrong," he explains. "The punchbag's 20 kg . So its weight is 196 N - call it 200 N to be on the safe side. I wasn't able to hang it straight down like I usually would because the girders in the roof are in the wrong place. So I decided to use two ropes to hang it from a couple of girders.

I thought that each rope will be supporting half of the weight. That must be 100 N per rope, as both ropes are at the same angle. The ropes I used to hang the punchbag were guaranteed to cope with a tension of up to 180 N ... or so the manufacturers claimed.

So I put the punchbag on top of a stepladder to set it at the right height, then went up and attached the ropes. But as soon as I took away the stepladder, one of the ropes broke! I couldn't believe it! And then of course the punchbag swung sideways and the other rope broke.

Why did the first rope break?

Problems with a punchbag

Why did the first rope break?

Geoff assumed that each rope would only have to provide enough tension force to prevent the punchbag from falling. But the tension force also needs to prevent the punchbag from swinging. which is what would happen if the other rope wasn't present.
Each rope exerts a tension force on the punchbag in the direction of the rope:

Weight $=m \mathbf{g}$
As the punchbag isn't falling, the vertical components of the tension in each rope plus the weight of the punchbag need to add up to zero. If you make up the positive direction:

$$
\mathbf{T}_{1} \sin \left(30^{\circ}\right)+\mathbf{T}_{2} \sin \left(30^{\circ}\right)-196 \mathrm{~N}=0
$$

But for the punchbag to be stationary and not to swing, the horizontal components of the tension in each rope must also add up to zero. If you make left the positive direction:

$$
\mathbf{T}_{1} \cos \left(30^{\circ}\right)-\mathbf{T}_{2} \cos \left(30^{\circ}\right)=0
$$

This gives you two equations to work out two unknowns, \mathbf{T}_{1} and \mathbf{T}_{2}.

Have a go at solving them yourself! When you solve them, the tension in each rope is an enormous 196 N - the same as the tension you'd need to hold up the punchbag using a single vertical rope. As each rope can only cope with a tension of 180 N , one of them broke just before the other one would have.

The high tension is because of the relatively small angle the ropes make with the horizontal - a lot of extra tension is needed to prevent the bag from swinging.

Tension

Tension is the force that a rope can mediate when it's pulled tight. The tension force is the same at each end of the rope.

Pulley

A pulley allows you to "change" the direction of a force by providing a wheel that a rope can run around and providing a support force to prevent the rope from straightening.

Your Physics Toolbox
 You've got Chapter 15 under your belt and added some problem-solving skills to your ever-expanding toolbox.

Rope and pulley

If a problem involves a rope and a pulley, look to see if you're asked about forces. If so, you should draw a separate free body diagram for each object attached to the rope.
The size of the tension is the same at each end of the rope.
Both objects must have the same size of acceleration, as they are attached together.

Spot the difference

As well as differences in height, look out for differences in speed and work done against friction.
Play "spot the difference" like this before you write down an energy conservation equation to make sure you don't miss anything out.

Break down the problem into parts

 When you have a complicated problem, try to break it down into parts.Then start with the part that looks the easiest for you to solve!

16 circular motion (part 1)

Froma to ω

You say you want a revolution? In this chapter, you'll learn how to deal with circular motion with a crash course in circle anatomy, including what the radius and circumference have to do with pies (or should that be $\pi s)$. After dealing with frequency and period, you'll need to switch from the linear to the angular. But once you've learned to use radians to measure angles, you'll know it's gonna be alright.

Limber up for the Kentucky Hamster Derby

Universally acclaimed as the most exciting two minutes in a wheel, the Kentucky Hamster Derby is big business! You've been called upon by one of the biggest owners in the business to implement an exacting training programme that's been tailored for the big race.

At the moment, the hamsters aren't following their schedule. Some are slacking off, and others are over-working. It's up to you to make sure that the hamsters train exactly as they should.

You can revolutionize the hamsters' training

It's time to design the ultimate hamster training tool.
The equipment you have to achieve this is:

A standard hamster racing wheel with a radius of 10.0 cm . This means that it is 10 cm from the center of the wheel to the edge, where the hamster runs.

The radius is the distance from the center to the edge.

A counter that counts wheel revolutions. You can use this to start the motor, then stop it after a certain number of wheel revolutions.

Counter can be programmed to stop motor after a certain number of revolutions.

Counter keeps track of the number of wheel revolutions.

> Circular motion is different from linear motion.

The schedule involves linear distances and speeds, which you'd usually measure along a straight line or by using component vectors.
But the hamster wheel is circular, and the counter keeps track of the number of revolutions. How are we going to go from the linear schedule to the circular equipment?
Cprain
pown

The schedule is linear, but the equipment is circular. What are you going to do next?

Circumference is a word that means the 'perimeter' of a circle.

The circumference

 of a circle is the DISTANCE something at the edge travels in one REVOLUTION.You can also think of the circumference as the distance around the edge of a stationary circle, but in physiss it's more useful to think about it in terms of a rotating circle.

Joe: Yeah - it's really important to get this training schedule automated and set up!

Jim: So I guess we use the motor to make the wheel turn at a certain speed, and have the timer switch it off when it's covered the right distance? That sounds pretty straightforward.

Frank: We already know the wheel's 10.0 cm all the way round ...
Jim: No - the radius of the wheel is 10.0 cm , but that's the distance from its center to its edge. We need to know the distance the outside of the wheel travels in one revolution.

Frank: Yeah, OK, so we need to figure out the distance a hamster runs for each revolution of the wheel. The counter counts the number of revolutions the wheel's made. So we work out the number of revolutions required to cover each distance, and we're fine.

Joe: But if we don't know the circumference of the wheel, we can't do anything with that.

Frank: What's a circumference?
Joe: The circumference is the special name for the perimeter of a circle - the distance all the way round the outside.

Jim: OK, so we need some way of working out the circumference. If we know what distance the hamster covers when the wheel goes round once, we can use that to work out how many revolutions the wheel needs to do to cover each distance.

Jim: And if we know that, then we can set the counter to turn the motor off once the wheel's done the correct number of revolutions.

Frank: I guess we need to work out what those numbers on the motor mean as well, so we can get the speed right. It's a shame the units got rubbed off.

Joe: Yeah, that's a good point.
Jim: Well, speed is distance divided by time, isn't it? So if we get the distance sorted out first, we can think about setting the right speed later.

Frank: Cool, let's go for it!

Thinking through different approaches helps

You need to work out the hamster wheel's circumference (the distance all the way round the edge) so that you know how many revolutions are equal to each distance in the training schedule.

But all you know at the moment is that the wheel is a circle with a 10.0 cm radius (the distance from its center to its edge). How are you going to work out its circumference so that you can implement the training schedule?

Use the circumference (once you know it) to work out how many revolutions the wheel needs to do for each distance.

Sharpen your pencil

You have a hamster wheel and want to know the distance that the hamster will cover when the wheel goes round once - i.e., the circumference of the wheel (which has a 10.0 cm radius).

Write down as many methods as you can think of to work this out.
You're describing practical methods, not giving a numerical answer.

Sharpen your pencil
 Solution

You have a hamster wheel and want to know the distance that the hamster will cover when the wheel goes round once - i.e., the circumference of the wheel.

Write down as many methods as you can think of to work this out.
You're describing practical methods, not giving a numerical answer.
Get a piece of string, wrap it once round the wheel.

Mark where it comes to, then take the string off the wheel and measure it with a ruler.

Remove the wheel from the stand and make a mark on it. Line up this mark with a mark on the ground.
Then roll the wheel along until the mark is touching the ground again.
Measure the distance between the first mark on the ground and the second mark on the ground.

It'd be a shame to have to do all that again if we decide to use a different wheel, or if we
 have to deal with other circles in the future. Is there an equation we could use instead?

Equations save you time.

You can work out the distance around the hamster wheel by wrapping string around it or rolling it. But what if you need to deal with other circles in the future?
It's definitely easier to use a ruler to measure a linear distance (like the radius) than it is to measure a curved distance (like the circumference), so an equation linking the radius and circumference would be useful!

> If you have to do a task more than once, try to work out an equation that'll save you time.

A circle's radius and circumference are linked by π

All circles are similar. They're exactly the same shape zoomed in or out. Although they don't have 'sides', you can be sure that the ratio of a circle's circumference to its radius will always be the same. (Just like the sides of similar triangles always have the same ratios.)

This is another way of saying that whatever size the circle is, its radius will always fit around its circumference the same number of times.

A circle's radius fits around its circumference approximately 6.28 times (3 sd).

The actual ratio of the lengths is a number with an infinite number of significant digits! So rather than writing " $6.28(3 \mathrm{sd})$ " as the ratio, there's a special abbreviation for it -2π, where $\pi=3.14$ (3 sd).

So you can write down the equation $C=2 \pi r$, where C is the circumference and r is the radius. In other words, if a circle's radius is 1.00 m , its circumference is 6.28 m , and so on.

In physics, the RADIUS is more interesting than the diameter.

For example,

 torque $=$ radius x force

637

Q: What are the units of π ?

A:- π is a ratio of two lengths, the circumference and the diameter. It tells you the NUMBER of times the diameter fits into the circumference -3.14 (3 sd) times. Length divided by length is dimensionless, so π is a NUMBER and doesn't have any units.

Q: Do I need to remember the value of π for my exam? A: - Knowing that $\pi=3.14(3 \mathrm{sd})$ is useful. If you're doing AP Physics, you wont have a calculator in the multiple choice section, so the approximation $\pi=3(1 \mathrm{sd})$ will help you to choose the option that's in the right ballpark.
Q: . Can I use the [π] button on my calculator in the section where I'm allowed a calculator?

A: Yes, that's be fine - though you need to round your answer to an appropriate number of significant digits at the end.

Q:But why is $\pi 3.14$ (etc) in the first place, when that makes the ratio of a circle's radius to its circumference 2π ?

A:

 - π was originally coined to describe the ratio between a circle's circumference and its diameter: $C=\pi d$. Nowadays, the ratio of a circle's circumference to its radius is more often used in physics - but the value of π had already been decided.Q: Surely it must end somewhere!
A : Nope! π is an irrational number, which means you can't write it down exactly.

Q:- Is that why there's a symbol for it then? To avoid having to write more of it out than you really need to?
A: That's right. You can write the equation: circumference $=2 \pi r$ and the ' $=$ ' sign is true because when you use the symbol π it implies the full irrational number!
Otherwise you'd have to write circumference $=6.28 \mathrm{r}$ (3 sd) as you'd never be able to write down the exact value of the circumference as an equation.

Q:- That all sounds a bit philosophical to me. I guess that in practice, I can write down circumference $=2 \pi r$ when I'm showing my work, then at the very end I can use the value $3.14(3 \mathrm{sd})$ for π when I'm actually putting the numbers in to work out an answer?
A: : That's a very good way of thinking about it. Q: So do I get to use π to design the hamster trainer
now? ,
A: On you go then ...

The ratio of a circle's circumference to its diameter is π. As the radius is half the length of the diameter, the ratio of the circumference to the radius is 2π. So $C=2 \pi r$

π is the ratio of two lengths - it tells you the NUMBER of times the diameter fits into the circumference. Because π is a NUMBER, it has no units.

Convert from linear distance to revolutions

The hamster training schedule contains distances in km . Your job is to implement the schedule using the wheel and a counter that keeps track of the number of revolutions. So you need to work out how many circumferences - and therefore how many revolutions - each distance is equivalent to.

a. Assume you have a hamster wheel, radius r. Write down an equation in terms of r that gives you the distance that something on the edge of the circle will cover if the circle rotates once.
b. You would like the hamster to cover distance x. Write down an equation that gives you x in terms of r. and the total number of revolutions, N.
c. Your hamster wheel has a radius of 10.0 cm . Fill in the 'total number of revolutions' column for the distances shown in the hamster training schedule. There's space under the table for you to show your work.

Distance (km)	Speed $(\mathrm{km} / \mathrm{h})$	Total number of revolutions	Motor setting (\quad)
15.00	3.00		
10.00	4.00		
2.00	5.50		

a. Assume you have a hamster wheel, radius \mathbf{r}. Write down an equation in terms of \mathbf{r} that gives you the distance that something on the edge of the circle will cover if the circle rotates once.

$$
\text { Circumference } C=2 \pi r
$$

b. You would like the hamster to cover distance x. Write down an equation that gives you x in terms of r. and the total number of revolutions, N.

Number of revolutions is the same as the number of circumferences in distance x :

$$
\begin{aligned}
N & =\frac{x}{C} \quad \text { and } \quad C=2 \pi r \\
\Rightarrow N & =\frac{x}{2 \pi r}
\end{aligned}
$$

If you have a mixture of distance

$$
\text { units, it's usually safest to convert } N=23900 \text { revolutions (3 sd) }
$$ everything to meters.

$10.00 \mathrm{~km}: N=\frac{10.00 \times 10^{3}}{2 \times \pi \times 0.100}$
$N=15900$ revolutions (3 sd)

Don't worry about
this column yet, you'll fill it in later.
c. Your hamster wheel has a radius of 10.0 cm . Fill in the 'total number of revolutions' column for the distances shown in the hamster training schedule. There's space under the table for you to show your work.

Distance (km)	Speed $(\mathrm{km} / \mathrm{h})$	Total number of revolutions	Motor setting (\quad)
15.00	3.00	$23900(3 \mathrm{sd})$	
10.00	4.00	$15900(3 \mathrm{sd})$	
2.00	5.50	$3180(2 \mathrm{sd})$	

$2.00 \mathrm{~km}: \quad N=\frac{2.00 \times 10^{3}}{2 \times \pi \times 0.100}$
$N=3180$ revolutions (3 sd)

Your answer is a NUMBER of revolutions.

To work out the number of wheel revolutions in 15 km , you divide the total distance $(15000 \mathrm{~m})$ by the circumference of the wheel $(2 \pi r=0.628 \mathrm{~m})$. This gives you an answer of 23900 - and there are no units, as a length divided by a length is dimensionless.
So be careful if you're checking the units of an equation or answer. A quantity that represents a number (of things, for example number of revolutions) doesn't have units!

Convert the linear speeds into Hertz

The distances slot into the training schedule brilliantly - but The distances slot into the training schedule brilliantly - but
the speed the hamsters train at for each session is also vital. You have a motor you can use to turn the wheel ... but the units have been rubbed off. However, the hamster owner thinks that the motor might be marked in Hertz.
 Hertz is always capitalized, and can be abbreviated to Hz .
Hertz is a unit of frequency that describes the number of times per second something regular happens. In physics, this is often referred to as the number of cycles per second.
So if the wheel goes round 5 times per second, you can say that it has a frequency, f, of 5 Hz .

The period of the wheel is the time the wheel takes to do one rotation, and is given the symbol T.

The distances are cool - but the speeds are really important too. I think the motor might be
 So its period must be $T=\frac{1}{5}=0.2 \mathrm{~s}$.

$$
G_{\mathbf{f}}^{\text {Frequency }}=\frac{\mathbf{1}}{\mathbf{T}_{\text {Period }}} \stackrel{\text { Period }}{G}=\underset{\text { Freveneny }}{\mathbf{1}}
$$

You can calculate the period from the frequency. If something happens 5 times per second (so has a frequency of 5 Hz), then it happens 5 times in 1 second.

Distance (km)	Speed $(\mathrm{km} / \mathrm{h})$	Total number of revolutions	Motor frequency (Hz)
15.00	3.00	$23900(3 \mathrm{sd)}$	
10.00	4.00	$15900(3 \mathrm{sd})$	
2.00	5.50	$3180(3 \mathrm{sd)}$	

b. You already worked out that this training plan c. Do similar calculations to fill in the rest of the table. involves the wheel doing a total number of 23900 revolutions. Calculate the period, T, and hence the frequency, f, of the wheel, and fill in the table.

The period, T, is the time for one rotation of the wheel.

So you set up the machine ...

You've used the fact that the circumference of a circle $C=2 \pi r$ to convert the units in the training schedule (km and km / h) to units that are much easier for you to work with - number of revolutions and Hertz.

The motor has numbers on its dial, but the units have rubbed off. The hamster trainer is sure they must be Hertz, so you set up the machine to test the first training session on the schedule, using the data from your table ...

Hey kiddo - that wheel's turnin' waaay too slow. You gotta work out what's up with it!

... but the wheel turns too slowly!

When the billionaire hamster owner comes to inspect your work, there's a problem. He says that the wheel's turning far too slowly - something's gone wrong and you need to fix it quickly if you're going to stand any chance in the race!

Sharpen your pencil

a. What do you think might have gone wrong?
b. How would you go about investigating and fixing it?

643
a. What do you think might have gone wrong?

Maybe the owner got the units of the motor wrong, and they're something else instead of Hz
b. How would you go about investigating and fixing it?

Do some tests or experiments with the motor to count the number of revolutions it does in a certain time when set to a certain number, to try to work out what its units are and how to convert them to what we already know about.

> Always make sure you know the UNITS of everything you're dealing with!

Jim: I already double-checked the math - and it's fine.
Joe: Hmm. Maybe we made a mistake with some units.
Jim: I already checked the units - they all work out.
Joe: No, I mean we assumed that the numbers written on the motor are in Hertz when the units had rubbed off. But what if the hamster owner's wrong about that?

Frank: So how are we going to work out what the numbers on the motor mean? I guess we could count how many times it actually goes round per second when it's set to 1.33 like it is now?

Jim: Why use a clumsy number like 1.33? Why don't we set it to ' 1.00 ' and see how long it takes to do 1 revolution like that. Then we'll be able to convert the frequency in Hertz we worked out to whatever units the numbers are in.

Joe: Yeah, ' 1 ' is an easier number to work with. I guess we could also move the slider to try and make the wheel go round exactly once per second. Then we have two values to work with.

Try some numbers to work out how things relate to each other

We originally assumed that the numbers on the motor represent revolutions per second (i.e. Hz) - but the wheel's going too slowly for that. What you need to do is try some 'nice' values on the control, and count how many revolutions per second they correspond to.

What if you set the motor to '1.0'?

When you set the control on the motor to 1.0 , the wheel takes around 6.3 seconds to complete exactly 1 revolution.

If you want to try things out, choose 'nice' numbers, like

1 or $\mathbf{1 0}$, to play with.

What if the wheel goes at 1.0 Hz ?

Then you try to find the value on the motor where the wheel actually goes around once per second, i.e., with a frequency of 1.0 Hz . After playing a bit, you find that a setting of

Sharpen your pencil

With the motor set at 1.0, 1.0 revolution takes 6.3 s . And with the motor set at around 6.3, 1.0 revolution takes 1.0 s .

Have you seen a number close to 6.3 somewhere else recently? Look back through this chapter if you can't remember.

What do you think the numbers on the motor might represent?

With the motor set at 1.0, 1.0 revolution takes 6.3 s . And with the motor set at around 6.3, 1.0 revolution takes 1.0 s .

Have you seen a number close to 6.3 somewhere else recently? Look back through this chapter if you can't remember.

What do you think the numbers on the motor might represent?

The circumference of a circle is 2π - or 6.28 - times larger than the radius. So 1 revolution is around 6.3 radii. If you set the motor to 1 , it takes about 6.3 seconds to do one revolution (i.e. 6.3 radii) And if you set the motor to 6.3 , it does 1 revolution (i.e. 6.3 radii) in a second.

So maybe the units on the motor tell you how many radii per second the outside of the wheel does?

The units on the motor are radians per second

You've spotted that there are around 6.3 (2 sd) 'radii' in a circumference. When the motor is set to 6.3 , the wheel goes at 1 revolution per second (i.e. 6.3 'radii' per second).

The numbers on the motor should have units of radians. A radian is a unit used to measure angles. If you rotate the wheel through an angle of 1 radian, the outside of the wheel travels a distance equal to the radius of the wheel.

Radians are

a way of measuring angles.

There are

2π radians in one complete revolution.

Radians are very helpful if you're trying to connect the angle a wheel's turned through and the distance the edge of the wheel has covered.

The edge of a wheel that's turned through an angle of 1 radian has covered a distance the length of the wheel's radius, r. If you turn the wheel an angle of 2 radians, the edge covers a distance of $2 r$. If you turn the wheel by 2.4 radians, the edge covers a distance of $2.4 r$. You multiply the angle by the radius to get the distance.

If you rotate the wheel through an angle of 2π radians, the outside of the wheel travels a distance of $2 \pi r$, as the circumference of the circle $=2 \pi r$. Therefore, there are 2π radians in one revolution.

This fits with what you learned by experimenting with the motor. When the motor is set to $6.3(2 \pi)$ radians per second, the wheel goes round at a rate of 1 revolution per second.

Radians are particularly useful when you're dealing with circles.

Degrees are only 'familiar' because you're already used to dealing with them. As you practice with radians, they'll become a whole lot more familiar.

Although you'll still use degrees when working with triangles, radians are particularly useful when you're dealing with circles, as you can move between angles and distances more quickly using the equation $x=r \theta$, where x is the distance covered round the edge of the circle as you rotate through angle θ.

When you're working with circles, radians help you to move between angles and distances quickly. Here's your chance to practice working with radians and compare it with working with degrees before you go on to do the 'mission-critical' bit with the hamster wheel.

Working with degrees

A hamster wheel with a radius of 0.100 m turns through an angle of 60°. What distance does the outside of the wheel cover?

Hint: What
 proportion of
 the circle's
 circumference is
 swept out by an
 angle of 60° ?

Working with radians

A hamster wheel with a radius of 0.100 m turns through an angle of $\frac{\pi}{3}$ radians. What distance does the outside of the wheel cover?

> Hint: Use the equation $x=r \theta$ where x is the distance covered for the angle θ.

Compare the math you've had to do to calculate a distance from an angle using degrees and using radians.

When you're working with circles, radians help you to move between angles and distances quickly. Here's your chance to practice working with radians and compare it with working with degrees before you go on to do the 'mission-critical' bit with the hamster wheel.

Working with degrees

A hamster wheel with a radius of 0.100 m turns through an angle of 60°. What distance does the outside of the wheel cover?

$$
\begin{aligned}
& \text { Angle of } 60^{\circ} \text { is } \frac{60}{360} \text { or } \frac{1}{b} \text { of the circle. } \\
& \text { Total circumference }=2 \pi r \\
& \Rightarrow \text { Distance covered }=\frac{1}{6} \times 2 \pi r \\
&=\frac{1}{6} \times 2 \times \pi \times 0.100 \\
& \text { Distance covered }=0.105 \mathrm{~m}(3 \mathrm{sd})
\end{aligned}
$$

Working with radians

A hamster wheel with a radius of 0.100 m turns through an angle of $\frac{\pi}{3}$ radians. What distance does the outside of the wheel cover?

$$
\begin{aligned}
& x=r \theta \\
& x=0.100 \times \frac{\pi}{3} \\
& x=0.105 \mathrm{~m}(3 \mathrm{sd})
\end{aligned}
$$

Compare the math you've had to do to calculate a distance from an angle using degrees and using radians.
The final step of the math is more or less the same both times. But it takes much longer to get there from an angle in degrees than it does from an angle in radians.

there are no

Dumb Questions

Q:
Why would I want to use radians to measure angles?
A: If you're working with circles, radians simplify calculations greatly. In degrees, you first of all have to work out what fraction of the circle the angle is (for example, 60° is a sixth of a full circle), then multiply that by $2 \pi r$ to get the distance. But in radians, this has already been done, and you only have to multiply the angle by the radius to get the distance.

$Q:$: Will I be using radians for the rest of this book then?
A: : For anything involving circles and regular motion, you'll be using radians. But you'll still be using degrees for triangles.
Q: How can I get used to using radians when they look so weird!
A: : The big thing to remember is that there are 2π radians in one complete rotation. So there are π radians in half a rotation, $\frac{\pi}{2}$ radians in quarter of a rotation, $\frac{\pi}{3}$ radians in a sixth of a rotation, etc.

Q: Aren't fractions of π very awkward to work with, as π is an irrational number?
A : As long as you keep using fractions, like $\frac{\pi}{3}$ and $\frac{\pi}{2}$, then only put in the value of π at the end of a calculation, the fractions aren't difficult to work with.

> Think of angles in radians in terms of fractions of π.

Yes - it's good to think of angles in terms of "fraction of a revolution."

There are 360° in one full revolution. As you've practiced using degrees, you've got used to the idea that 90° is a right angle (quarter of a revolution), 45° is half of a right angle (an eighth of a revolution), 180° is half a revolution, and so on.

Here's the opportunity to practice thinking about radians in a similar way:

Pool Puzzle - Padians

Pöl Puzzle - Radians - Solution

Your job is to take the angles measured in radians from the pool and place them into the boxes around the circle to indicate the size of each angle. You may not use the same angle more than once, and you won't need to use all the angles. Your goal is to become more familiar with using radians to measure angles.

Note: each angle from the pool can only be used once!

Convert frequency to angular frequency

You've worked out that the units on the motor are radians per second. This is known as the angular frequency, and is given the symbol ω (pronounced "omega"). So if you set the motor to 1.0 , it will turn at a rate of 1.0 radian per second.

There are 2π radians in one complete revolution. You already know the frequency, f, that the wheel needs to be set at for each run - this is the number of revolutions per second that the wheel does.

The angular frequency is the number of radians per second.

As there are 2π radians in 1 complete revolution, you can use the equation $\omega=2 \pi f$ to calculate the angular frequency that the motor needs to turn at for each of the hamsters' training sessions.

Sharpen your pencil

Complete the table by calculating the angular frequency that the wheel needs to turn at for each training session. There's space for your work under the table.

Distance (km)	Speed $(\mathrm{km} / \mathrm{h})$	Total number of revolutions	Frequency (Hz)	Angular frequency $(\mathrm{rad} / \mathrm{s})$
15.00	3.00	$23900(3 \mathrm{sd)}$	$1.33(3 \mathrm{sd)}$	
10.00	4.00	$15900(3 \mathrm{sd)}$	$1.77(3 \mathrm{sd)}$	
2.00	5.50	$3180(3 \mathrm{sd)}$	$2.43(3 \mathrm{sd)}$	

Sharpen your pencil

Solution
Complete the table by calculating the angular frequency that the wheel needs to turn at for each training session. There's space for your work under the table.

Distance (km)	Speed $(\mathrm{km} / \mathrm{h})$	Total number of revolutions	Frequency (Hz)	Angular frequency $(\mathrm{rad} / \mathrm{s})$
15.00	3.00	$23900(3 \mathrm{sd)}$	$1.33(3 \mathrm{sd)}$	$8.35(3 \mathrm{sd})$
10.00	4.00	$15900(3 \mathrm{sd)}$	$1.77(3 \mathrm{sd)}$	$11.3(3 \mathrm{sd})$
2.00	5.50	$3180(3 \mathrm{sd)}$	$2.43(3 \mathrm{sd})$	$15.3(3 \mathrm{sd})$

$$
\begin{array}{ll}
f=1.33 \mathrm{~Hz}: & \omega=2 \pi f=2 \times \pi \times 1.33=8.35 \mathrm{rad} / \mathrm{s}(3 \mathrm{sd}) \\
f=1.77 \mathrm{~Hz}: & \omega=2 \pi f=2 \times \pi \times 1.77=\underline{\underline{11.1 \mathrm{rad} / \mathrm{s}}(3 \mathrm{sd})} \\
f=2.43 \mathrm{~Hz}: & \omega=2 \pi f=2 \times \pi \times 2.43=15.3 \mathrm{rad} / \mathrm{s}(3 \mathrm{sd})
\end{array}
$$

The hamster trainer is complete!

When you put the finishing touches to your hamster trainer by calculating the angular frequency, it's brilliant! After some hearty congratulations from the owner, you find yourself with a 20% stake in the thoroughbred hamster that's favorite to win next month's Kentucky Hamster Derby!

BULLET POINTS

- A circle's circumference is 2π times the size of its radius, $C=2 \pi r$.
- Frequency, f, is measured in cycles per second, or Hertz (Hz).
- Period, T, is the time it takes for one regular thing to happen. Think of it as "seconds per cycle."
- Radians are a way of measuring angles that are especially useful for doing calculations with circles. There are 2π radians in one revolution.
- It can sometimes be helpful to think about radians in terms of fractions of π.
- Angular frequency, ω, is the number of radians per second.
- As there are 2π radians in one revolution, $x=r \theta$.
- As there are 2π radians in one revolution, $\omega=2 \pi f$.

Great work! I can hardly wait to get the hamsters started with this!

Tonight's talk: Degree and Radian have a barney about who is better at measuring angles.

Degree:

Well, hello radian. You're pretty late to the party, aren't you?!

But I'm so easy to understand! None of those messy pies (or should I say π s) - just 360 degrees of goodness in every complete revolution. How much more straightforward can you get?

Oh yeah?! Such as ... ?

Radian:

I wouldn't quite say that. Sure, you've been around for a bit longer than I have. But that doesn't mean you're inherently better - just over the hill!

OK, so I admit that the πs might take a little bit of getting used to. But once you've got your head around them, you have to admit that I have far greater superpowers than you do!

Well, it's really easy to calculate distances from angles when something's going round in a circle using me. Suppose a wheel goes round an angle of θ radians, and they want to know the distance the has wheel gone? No problem! Just multiply the angle by the distance you are from the center of the circle (the radius, r) to get the distance, $r \theta$.

They can do that with me as well though! Suppose a wheel goes round 180°. They can work out that this is half the circle, as $180 / 360=0.5$. And they know what the circumference of the circle is $-2 \pi r$. So they just multiply those together $-0.5 \times 2 \pi r$ to get πr which is the distance the wheel's gone. Sorted!

But your way is sooo anti-intuitive!

Whaaaaatever!

A couple of weeks later ...

The hamsters are ready to move into the sprint training phase of their program. The owner explains that he wants the hamsters to be able to run at $3.00 \mathrm{~m} / \mathrm{s}$ - and that he also wants an easy way to convert from speeds in m / s to "the numbers on that motor".

This means that you need to come up with a way of converting between meters per second (linear speed) to radians per second (angular frequency).

When you did this before, it involved several steps. First of all, you worked out the total number of revolutions for a training run, and the total time the run took. From
 these figures, you were able to calculate the frequency (revolutions per second) and from there the angular frequency (radians per second).

That's a lot of steps!
But back then, you didn't know that the numbers on the motor were radians per second - you didn't know that's what you were aiming at. Now you know that you're aiming at radians per second ...

 from meters per second to radians per second.

Jim: Yeah - but that took us a loooong time before!
Joe: I've noticed that both the things we're supposed to be working with are "per second". Meters per second and radians per second.

Frank: So if we can convert from meters to radians, we might be able to do it more quickly than we did before.

Jim: We can already go between meters and radians! $x=r \theta$.
Frank: Hmm. So multiplying the angle (in radians) by the radius gives you the distance in meters. $x=r \theta$.
Jim: I wonder if that means multiplying radians per second by the radius will give us meters per second.

Joe: Yeah.. maybe we can say that $v=r \omega$?
Jim: How do the units check out? If you multiply radians by the radius, you get meters. So if you multiply radians per second by the radius then you get distance per second.
Frank: And "distance per second" is just another way of saying
 velocity. Brilliant!

These are some of the things from earlier in the chapter that the guys are talking about.
a. Your hamster wheel has a radius of 10.0 cm . Use the equation $v=r \omega$ to calculate the angular frequency it would need to turn with to enable the hamster to run with a speed of $3.00 \mathrm{~m} / \mathrm{s}$.
b. Your motor can spin at any angular frequency up to $25.0 \mathrm{rad} / \mathrm{s}$. How might you build a speed trainer capable of making a hamster run at $3.00 \mathrm{~m} / \mathrm{s}$ if you don't have a faster motor available?

Sharpen your pencil
 Solution

a. Your hamster wheel has a radius of 10.0 cm . Use the equation $v=r \omega$ to calculate the angular frequency it would need to turn with to enable the hamster to run with a speed of $3.00 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
v & =r \omega \\
\Rightarrow \omega & =\frac{v}{r}=\frac{3.00}{0.100} \\
\omega & =30.0 \mathrm{rad} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

b. Your motor can spin at any angular frequency up to $25.0 \mathrm{rad} / \mathrm{s}$. How might you build a speed trainer capable of making a hamster run at $3.00 \mathrm{~m} / \mathrm{s}$ if you don't have a faster motor available?
$v=r \omega$. The speed depends on both the radius and the angular frequency.
If it's not possible to increase the angular frequency high enough, another way to get a higher speed is to increase the radius. So you could use a larger wheel with the same motor.

Dumb Questions

Q:- So radians help you to go straight from distance to angle, or from speed to angular frequency?
A
: Yes - you can use the equations $x=r \theta$ and $v=r \omega$ to move quickly between linear and angular quantities.
Q:

- What if I want to know the speed of a point that's on the wheel, but not at the edge?

A: When the wheel spins, that point will 'sketch out' a circle with a radius the same as the distance that the point is from the center.

$Q:$- Is it OK to use that value for the radius, even if it's not the radius of the wheel?

A:: Yes - in this context, the radius is the distance from the center of the wheel to the point you're interested in.
Q : - Will $x=r \theta$ and $v=r \omega$ only work if θ and ω are in terms of radians not degrees?

A:Correct. If θ is in degrees, then you need to work out what proportion of the circle's circumference is included by dividing the angle by 360°, then multiplying by 2π to get the distance the point's travelled. With radians, that's already been done for you.

You can increase the (linear) speed by increasing the wheel's radius

If you have a wheel turning at angular frequency ω, the whole wheel turns through the same angle in the same time. But parts of the wheel that are a greater radius from the center travel a greater distance in the same time, so have a greater speed, v
This means that you can increase the maximum speed that your hamster trainer can cope with by increasing the radius of your wheel - without needing to change the angular frequency that it turns with.

Here, we're written v as a scalar to indicate that it's the size of the object's velocity. The direction of the velocity changes all the time as the wheel rotates.

Multiply the linear quantity by the radius to get the equivalent angular quantity.

 Yes - $\boldsymbol{\omega}$ is sometimes called the angular speed. ω is also called the angular speed, or sometimes the angular velocity, as it's the "angular equivalent" of the linear velocity.Just as x and θ are connected by the equation $x=r \theta, v$ and ω are connected by the equation $v=r \omega$.

So, because of how radians work, if you have an angular quantity (like θ or ω) you can multiply it by r to get to its linear equivalent.

Sharpen your pencil

Sharpen your pencil Solution

$$
\begin{aligned}
r & =r \omega \\
\Rightarrow r & =\frac{v}{\omega}=\frac{3.00}{25.0} \\
r & =0.120 \mathrm{~m}(3 \mathrm{sd})
\end{aligned}
$$

You have a motor capable of turning at $25.0 \mathrm{rad} / \mathrm{s}$,
and wish to train a hamster that runs at $3.00 \mathrm{~m} / \mathrm{s}$.

What radius of wheel do
you need to use?

With sprint training in a larger wheel added to their schedule, the hamsters are unbeatable, and win all of their races - including the Kentucky Hamster Derby!

BULLET POINTS

- You can go from an angle, θ, to the distance something r from the center of the circle has travelled by multiplying by the radius: $x=r \theta$.
- You can go from the angular frequency to the speed that something r from the center of the circle is moving at by multiplying by the radius, $v=r \omega$.
- The equation $v=r \omega$ only gives you the size of the velocity vector, not its direction. That's why v is written as a scalar.
- $\quad \omega$ is also called the angular speed. This is the same thing as the angular frequency - radians per second.

When you're thinking about the units of the terms in an equation, radians are dimensionless so don't have units.

Question Clinic: The "Angular quantities" Question

Angular frequency and angular speed are both to do with how fast something is rotating in radians per second.

Any time something's going in a circle, you're almost certain to have to deal with quantities such as angular displacement θ, and angular speed, ω. The main things to remember is that there are 2π radians in one complete revolution and that the circumference of the circle $=2 \pi r$. This means you can work out that you get the linear quantity by multiplying the angular quantity (e.g. $\theta=2 \pi$) by the radius, even if you forget the formulae $x=r \theta$ and $v=r \omega$.
'Wheel' is a buzzword that should get you thinking about rotational motion.

> This question gives you the diameter. Be careful - all of your equations involve the RADIUS, so you'll need to use a value of 10.0 cm not 20.0 cm .
> This is a LINEAR speed.
2. You need to arrange for a hamster wheel (diameter 20.0 cm) to turn so that the outside of the wheel goes at a speed of $3.00 \mathrm{~km} / \mathrm{h}$.
a. What angular frequency (in radians per second) does the
b. How mary revolutions per second is this equivalent to?
c. If the motor driving the wheel is only capable of rotating it at $25 \mathrm{rad} / \mathrm{s}$, what diameter would the wheel need to have in order to achieve a speed of $3 / \mathrm{N} / \mathrm{h}$?

Remember that there are 2π radians in exactly I revolution. Ask yourself which number you're expecting to be bigger when you do the conversion.

The question asks you for a diameter when you've been working with a radius throughout. Make sure you give them what they asked for!

One thing to bear in mind with this kind of question is whether it talks about the frequency

- number of revolutions per second - or the angular frequency,
aka angular speed which is the number of radians per second. As there are 2π radians in one revolution you can convert from one to the other easily enough - as long as you pay attention to which units are involved in the first place!

Radius
The distance from the center to the edge of a circle.

Circumference The distance round the outside of a circle. C = $\mathbf{2 m}$

Period

Radians
Angular frequency

The number of times something regular happens per second.

The number of seconds it takes for something regular to happen once.
An alternative way of measuring angles. There are 2π radians is one complete revolution.
The number of radians per second. Also known as angular speed.

Your Physics Toolbox

You've got Chapter 16 under your belt and added some terminology and problemsolving skills to your tool box.

Frequency and period

Frequency, f, is cycles per second.
Period, T, is seconds per cycle.

$$
T=\frac{1}{f} f=\frac{1}{T}
$$

Radians

Radians are a way of measuring angles. They are especially useful for working with circles. There are 2π radians in 1 revolution. Think of other angles in terms of 'fractions of ' 2π.

Linear and angular

You can get from the angle, θ, to the linear distance, x, with the equation:

$$
x=r \theta
$$

You can get from the angular speed, ω, to the linear speed, v, with the equation:

$$
v=r \omega
$$

17 circular motion (part 2)

*Staying ô track

Ever feel like someone's gone off at a tangent? That's exactly what happens when you try to move an object along a circular path when there's not enough centripetal force to enable this to happen. In this chapter, you'll learn exactly what centripetal force is and how it can keep you on track. Along the way, you'll even solve some pretty serious problems with a certain Head First space station. So what are you waiting for? Turn the page, and let's get started.

Houston ... we have a problem

Astronauts at the Head First space station are threatening to go on strike. They're fed up with floating around all the time. The astronauts want to be able to walk around the station just like they can on Earth.

You've been called in to create artificial gravity for an add-on to the station... and keep those astronauts happy.

> If an object is in freefall, the only force acting on the object is its own weight.

The space station is in FREEFALL.

The only force acting on the space station is the force of its weight - the gravitational attraction it experiences from the Earth. It's not touching anything else, so there are no contact forces on it. And the lack of atmosphere means that there's no friction either as it orbits the Earth.

If an object is in freefall, then the only force acting on the object is its own weight. So the space station is in freefall. The same is true for the astronauts - the only force acting on each astronaut is that astronaut's weight.
But when the force of an object's weight acts down
 towards the center of the Earth, how can the object possibly orbit the Earth by going around the Earth?!

Suppose you fire a cannon. The cannonball is in freefall, because the only force acting on the cannonball is its own weight. So the cannonball follows a curved path as it falls and hits the Earth.

In freefall - only force acting on cannonball is its weight.

Locally, the Earth appears flat, but it's really round. If the cannonball is very fast or starts off very high, it goes further before it lands because the surface of the Earth curves away from the cannonball as it falls.

Where surface of Earth
 would be if it was flat.

Earth is round, so the cannonball actually goes further and lands here.
(3)

If the cannon is high enough and the cannonball is fast enough, the surface of the Earth keeps on curving away as the cannonball's flightpath curves down. The cannonball keeps on freefalling round the Earth in orbit - just like the space station and astronauts.

For a tall cannon and high speed, cannonball freefalls forever - and orbits the Earth.

The astronaut is in freefall - the only force acting on him is his weight. So why does he feel weightless in the space station?

When you're in freefall, objects appear to float beside you

Suppose you're midway through a parachute jump, but you haven't opened your chute yet. If you let go of an apple as you fall, the apple will fall with the same velocity as you. It looks like the apple's just floating there.
Of course, if you're doing a parachute jump, there are some clues that indicate that you and the apple are both falling. The Earth gradually looks bigger, and you can feel the wind rushing past you!

You and apple are falling at
the same rate.- so the apple stays beside you.

But if you and the apple were in a soundproof windowless box, you wouldn't have any visual or audible clues that you're falling. The apple would appear to float next to you! And as the box is also falling at the same rate as you, you would appear to float around inside the box. If you pushed yourself up off the floor, you wouldn't fall back down again like you would on Earth.

What's the astronaut missing, compared to when he's on Earth?

If an astronaut is in freefall, then he and the objects in the space station will appear to float around because everything's falling at the same rate.
But why does a dropped apple in an orbiting space station appear to act so differently from a dropped apple on Earth - when they're both falling because of the force of their weight, as usual? And why isn't it possible to walk around normally in the space station like you can on Earth?

When you're dealing with forces, always start with a free body diagram...

> For problems involving forces, always start with a free body diagram.

Sharpen your pencil

a. Draw a free body diagram of all the forces the astronaut would experience while standing on Earth.
b. Draw a free body diagram of all the forces an astronaut would experience while in freefall.
c. When you compare the free body diagrams in parts a and b, which force is missing?
d. How does a person on Earth experience their weight differently from a person in freefall?
e. How might you introduce a new force to compensate for the missing one you spotted in parts cand d, so the astronaut can walk around as he would on Earth?
a. Draw a free body diagram of all the forces the astronaut would experience while standing on Earth.

b. Draw a free body diagram of all the forces an astronaut would experience while in freefall.
c. When you compare the free body diagrams in parts a and b , which force is missing?

The astronaut in the space station doesn't experience a contact force from the ground.
d. How does a person on Earth experience their weight differently from a person in freefall?

They don't feel a contact force from the ground - they're in freefall, and the only force they experience is their weight. This means that they can't walk around like they can on Earth, as you need a normal force to have enough friction to walk like they usually do.
e. How might you introduce a new force to compensate for the missing one you spotted in parts and d, so the astronaut can walk around as he would on Earth?

Newton's Ind law is $F=$ ma. You could make the astronaut experience a force by accelerating the space station.

Dumb Questions

Q:- So why do we need artificial gravity when the space station still feels the effect of the Earth's gravity?
A: : If you're in freefall, you feel weightless because you - and other objects - appear to float around, as they're not going anywhere with respect to each other.

Q: But you still have a weight, right? A : Yes - just like someone doing a parachute jump still has a weight. It's the force of their weight that makes them fall!

Go back and look at the first WeightBotchers machine in chapter II if you're not sure

Q: so why is someone in freefall called "weightless" when they have a weight? Isn't that confusing?
A: : Yes, it is confusing! "Weightless" is an everyday way of saying that they aren't experiencing any kind of contact force from a surface as a result of their weight. If the person had scales under their feet, the scales would read zero.

Can you mimic the contact force you feel on Earth?

The difference between standing on the ground and freefalling is the contact force that the ground exerts on you. This is the force that the astronauts want to experience.

If you can make each astronaut experience a contact force equal to the size of his weight, as he does on Earth, he should be able to walk around the space station just like he can on Earth.

But how can you make someone experience a contact force like this?

Sharpen your pencil

The key thing is to close your eyes and ask "WHAT DOI FEEL PUSHING ON ME?"

Imagine yourself in these scenarios. Draw the contact force you experience in each situation as a result of the acceleration, and write down what you FEEL. For instance, "Something's pushing me in the back."

Does this give you an idea about how you might make the astronaut experience a contact force from the inside wall of the space station that would feel similar to the one he experiences on Earth?

Imagine yourself in these scenarios. Draw the contact force you experience in each situation as a result of the acceleration, and write down what you FEEL. For instance, "Something's pushing me in the back."
Train is sitting
still, then
accelerates to the the back of
right as it pulls
out of a station. pushing on me.
Train is moving
to the right, then
decelerates to a
stop as it pulls
into a station.

Does this give you an idea about how you might make the astronaut experience a contact force from the inside wall of the space station that would feel similar to the one he experiences on Earth?

You could accelerate the space station. That would make the astronaut experience a contact force - like I do when a train accelerates.
N. If you accelerate it at $9.8 \mathrm{~m} / \mathrm{s}^{2}$, then this contact force will be exactly the same size as the one he experiences on Earth.

Q:- I can imagine the seat pushing into my back when a train accelerates. But why does that happen?

A.: Newton's 1st law says that an object will continue to move at a constant velocity unless it's acted on by a net force. If you were sitting on the platform, the fact that the train is accelerating wouldn't affect you, as there's no contact between you and it.

But because you're sitting on the train, the back of your seat is able to mediate a net $/ \checkmark$ contact force that causes you to accelerate. You feel the seat pushing into you.

How large is the contact force? A: Newton's 2nd Law says that $\mathbf{F}=$ ma. You can work out the size of the contact force from your mass and your acceleration.

Q: - How can I make the astronaut feel a contact force?

A : : If you accelerate the space station upward, the astronaut will experience a contact force from its wall because he is inside it - just like you do when you're on the train.

In the context of forces, 'mediate' means 'transmit'.

Q: why will accelerating the space station mean that a dropped apple will fall like it does on Earth?
A: The apple will continue at the velocity it already had (Newton's 1st Law), as there is no contact force on it while it is falling.

Meanwhile, the space station will accelerate up to meet it at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$. So if you're in the space station, it feels like you're on Earth (because of the contact force you experience), and it looks like you're on Earth because objects accelerate towards the ground at the same rate.

Accelerating the space station allows you to experience a contact force

If you lie on the ground with your eyes shut, you can feel a contact force from the ground pushing into your back.

If the train pulls away from the station with an acceleration of exactly $\mathbf{9 . 8} \mathbf{~ m} / \mathbf{s}^{2}$, then you would feel exactly the same size of contact force as you do when you lie on the ground.

So if you accelerate the space station at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$, the astronauts will experience the same size of contact force as they usually experience when they're standing on Earth. This creates the artificial gravity that the astronauts want!

But how practical is this?

a. Einstein's Theory of Relativity says that nothing can move faster than the speed of light, $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. If you accelerate a space station from rest at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$, what time would it take it to reach a speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (assume for a moment that this is possible and there are no relativistic effects)?
b. What distance would the space station cover in that time?
c. The distance from the Earth to the Moon is $4 \times 10^{8} \mathrm{~m}(1 \mathrm{sd})$, and the distance to the edge of the Solar System is $5.7 \times 10^{12} \mathrm{~m}$. How does the distance you worked out in part b compare?
d. How practical do you think this idea is for creating artificial gravity in a space station?

Sharpen your pencil

Solution

a. Einstein's Theory of Relativity says that nothing can move faster than the speed of light, $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$. If you accelerate a space station from rest at a rate of $9.8 \mathrm{~m} / \mathrm{s}^{2}$, what time would it take it to reach a speed of $3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (assume for a moment that this is possible and there are no relativistic effects)?

$$
\begin{array}{lll}
& \square & \text { Work out } t: v=v_{0}+a t \\
v_{0}=0 \mathrm{~m} / \mathrm{s} & & \text { But } v_{0}=0 \\
v=3.0 \times 10^{8} \mathrm{~m} / \mathrm{s} & & t=\frac{v}{a}=\frac{3.0 \times 10^{8}}{9.8} \\
a=9.8 \mathrm{~m} / \mathrm{s}^{2} & & t=3.1 \times 10^{7} \mathrm{~s}(2 \mathrm{sd})
\end{array}
$$

b. What distance would the space station cover in that time?

Work out x :

$$
\begin{aligned}
& x=x_{0}+v_{0} t+1 / 2 a t^{2} \\
& x=0+0+0.5 \times 9.8 \times\left(3.1 \times 10^{7}\right)^{2} \\
& x=4.7 \times 10^{15} \mathrm{~m}(2 \mathrm{sd})
\end{aligned}
$$

c. The distance from the Earth to the Moon is $4 \times 10^{8} \mathrm{~m}(1 \mathrm{sd})$, and the distance to the edge of the Solar System is $5.7 \times 10^{12} \mathrm{~m}$. How does the distance you worked out in part b compare?
This distance is around 10 million times greater than the Earth-Moon distance and a thousand times greater than the edge of the Solar System.
d. How practical do you think this idea is for creating artificial gravity in a space station?
It's not practical because it's not possible to sustain it for a good length of time, and you end up very far away from the Earth. It must take a lot of fuel too.

0
0
1000 times further than the edge of the Solar System? That's waaay too far!

It's (theoretically) possible to make the astronaut experience a contact force similar to the one he experiences on Earth by accelerating the space station along a straight line at $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

But it's not practical. It's impossible to do this indefinitely, since the space station can't go faster than the speed of light, you'd run out of fuel, and you'd wind up a ridiculously long way away from the Earth.

So if we can't accelerate the space station linearly, what can we do?!

Jim: I wonder if there's another way of experiencing a contact force, apart from accelerating or decelerating along a straight line?
Joe: Hmmm ... what about those carnival rides where you go around in a circle? You kinda feel the side of the car pushing on you when they spin really fast ...
Frank: You feel the side of the car pushing you, so there must be a contact force. But where does it come from?

Jim: Yeah, it's not like the ride gets faster and faster. It spins at the same rate, so you keep going at a constant speed, yet you still feel this contact force from the side of the car. How can you feel a force if your speed is constant - doesn't that break Newton's 1st Law?
Joe: But the direction you're traveling in is changing all the time. That means your velocity is changing, even though your speed is constant. Velocity is a vector. Newton's 1st Law says that you move with a constant velocity unless there's a force acting on you.

Frank: So I guess the contact force changes your direction of travel - which changes your velocity - so causes you to accelerate.

Jim: But where does the force come from?! It's not like there's a train engine sitting behind you making you accelerate!

Frank: Well, you're thrown to the outside of the ride, aren't you? So there must be some kind of mysterious force pushing you outwards that's only there when you're spinning.

Frank: Hang on! When you're thinking about contact forces, you're meant to shut your eyes and ask, "What do I feel pushing on me?" And when I do that, I feel the side of the car pushing me inwards, not a 'ghost force' pushing me outwards.

Jim: But you slide kinda outwards across your seat before you make contact with the side of the car. If there isn't a force pushing you outwards, then why does that happen?!
Joe: If the side of the car wasn't there, you'd go straight on and fly out of the car. You only go in a circle because of the contact force from the side of the car pushing you inwards.
Frank: Ah ... you mean that sliding outwards feeling is just you continuing on at your current velocity (Newton's 1st Law) before you make contact with the side of the car - which exerts a force on you that lets you move in a circle?

If a contact force is acting on you, you can feel the direction it's pushing you in.

You can only go in a circle because of a centripetal force

Newton's 1st Law says that you continue with a constant velocity unless there's a net force acting on you. In other words, you keep on going at the same speed in the same direction.

If you're going around in a circle, your speed may stay the same, but the direction of your velocity vector changes.

If there's no net force acting on you,

If you're going around in a circle, your speed may be constant, but the direction of your velocity is certainly changing! This means that a force must be acting on you in order to make you go around in a circle - and stop you from going off along a straight line with the velocity you already have.

A force that allows you to go in a circle like this is called a centripetal force.

When you walk in a circle, the centripetal force is provided by friction.
Centripetal force is the name given to a net force that allows you to change the direction of your velocity so that you follow a circular path. Depending on the context, centripetal force can be provided by a number of things.
You're able to walk because of the friction between your feet and the ground. Without friction, you wouldn't be able to change the horizontal component of your velocity at all. You couldn't speed up. You couldn't slow down. And you couldn't change direction to follow a circular path. So in this case, friction provides the net force that enables you to follow a circular path - the centripetal force.

If the net force acting on you changes the direction of your velocity so that you travel in a circle, it's called a centripetal force.

there are no

Dumb Questions

QIs centripetal force another category of force to add to a contact forces and gravitational forces?

A: No, not at all! Centripetal force is the name given to the net force when it enables you to follow a circular path instead of continuing along a straight line.

Q:So if a force is able to change my direction, it might be able to provide a centripetal force?
$A:$: Yes, that's a good way to think about it.

Q:
 Where does a centripetal force come from?

A :
: The centripetal force required for you to follow a circular path may come from any source at all. It might be a contact force. It might be a frictional force. It might be a gravitational force.

Q: So it's not a "ghost force" that magically appears from nowhere?

A:That's right. If you draw a free body diagram of an object moving around in a circle, then the net force will be the centripetal force that causes the circular motion. centripetal force act in? You're about to figure that out ...

Tip: Draw in the radius of the
Sharpen your pencil circle, from the center ot each point. The velocity vector will be at 90° to the radius.
a. Draw the velocity vector at each of the points marked with an ' x ' on the ride. Assume that the ride is rotating with a constant angular frequency.
b. In a different color, draw in the left-right and up-down components of the velocity vectors you drew in part a.
c. Describe how the velocity components have changed from one ' x ' to the next. At each of the points marked 'o', draw in a vector representing a force that may have caused these changes.
Hint: the direction of the
force may be
changing as the ride rotates.
d. Which direction do you think the force vector will point in for other positions on the ride?
e. What is the source of this centripetal force that enables you to move in a circle?

The force needs to have a large down component and

Sharpen your pencil Solution

a. Draw the velocity vector at each of the points marked with an ' x ' on the ride. Assume that the ride is rotating with a constant angular frequency.
b. In a different color, draw in the left-right and up-down components of the velocity vectors you drew in part a.
c. Describe how the components have changed from one snapshot to the next, and draw in a vector representing a force that may have caused these changes.
Between the lst and 2 nd snapshots, the down component got much larger and the right component a bit smaller. So the force must be acting down and left (with more down)

Between the 2nd and 3rd snapshots, the right component has disappeared and the down component has got a bit larger. So the force must be acting down and left (with more left).
d. Which direction do you think the force vector will point in for other positions on the ride?
I think the force vector will always point towards the center of the circle.
e. What is the source of this centripetal force that enables you to move in a circle?
The contact force of the outside wall of the car pushing in on me.

It's OK if you said "the arm that goes between the car and the center", as that exerts the centripetal force that stops the car from flying off along a straight line.
 a small left component to \qquad

Centripetal force acts towards the center of the circle.

Centripetal force acts towards the center of the circle

If you're sitting in a rotating carnival ride, you experience a centripetal force, \mathbf{F}, towards the center of the ride. This is the force that enables you to continue traveling in a circle, instead of continuing at a constant speed in the same direction as you would if there was no force (Newton's 1st Law).

In the carnival ride, the centripetal force is provided by a contact force from the side of the car - you feel the side of the car pushing you towards the center of the circle as you go around..

Centripetal force is always provided by the net force on your free body diagram. Otherwise you'd just go along a straight line.

And once you're in CONTACT with the side of the centrifuge, the contact force can provide a centripetal force that makes you follow a circular path.

"Centrifugal force" isn't a force.

"Centrifugal force" is the name commonly given to the sensation of being thrown to the outside when you're in something that's rotating (e.g., a centrifuge).

But as you've just learned, what is often referred to as centrifugal force isn't a force! It's just you continuing at your current velocity in the absence of a net force.

Never EVER talk about "centrifugal force."

With no net force, you follow this path.
 circle which changes your velocity.

How can you use what you've figured out about centripetal force to help the astronauts?

The astronaut experiences a contact force when you rotate the space station

You can rotate the space station just like you rotate the carnival ride. Each astronaut will experience a centripetal force acting towards the center of the space station. This will be mediated by the contact force between his feet and the side of the space station. This will feel similar to the contact force he experiences on Earth.
As there's now a contact force, the astronauts will be able to walk around like they can on Earth - and won't go on strike!

Q- So anything that's rotating is subject to a centripetal force?

A:That's right. If the centripetal force wasn't there, the thing wouldn't rotate - it would travel along a straight line at its current speed.

Q :So why didn't the hamster running in the wheel in chapter 16 experience a centripetal force? Or did it?
A : Was the hamster rotating?

QNo ... the hamster stayed in the same place, and the wheel rotated as its feet pushed it along. I guess the hamster didn't experience a centripetal force.
A: Yeah, that's right.

Q:But the wheel's rotating, so the wheel must experience a centripetal force - yes? But how? The outside of the wheel isn't in contact with anything!
A: Centripetal force doesn't always have to be provided by a contact force from the outside. All you need is a force that points towards the center of the circle.

Q: so I guess the struts in the hamster wheel are mediating the centripetal force?
A: Absolutely! If one of the struts broke, and part of the outside of the wheel flew off, then it wouldn't be moving in a circle anymore. The broken part would fly off along a straight line at a tangent to the circle with whatever velocity it had when it became detached.
 That's Newton's 1st Law, right?

A:: Yep. It's also how hammer throwing works at the Olympics. The athlete spins round and round with the heavy ball on the end of a chain, then lets go. Without the centripetal force provided by the athlete pulling on the chain, the hammer flies off in a straight line.

> If the centripetal force 'disappears', you'll go off at a tangent to the circle.

Q: Yeah, I've seen that before. So are you saying it's the same in the space station? If you rotate the space station, you're giving the astronaut the potential to go flying off into space if a door suddenly opens or something?
A : That's right. If the astronaut didn't experience the centripetal contact force from the side of the space station acting towards its center, he would go along a straight line.

Q:Him. I guess there must be a centripetal force acting on the space station for it to have a circular orbit around the Earth in the first place?

A:: Great spot! You'll be learning all about that in chapter 16.

Q: So I guess I need to work out how fast I need to rotate the space station to produce a centripetal force of mg , like an astronaut would feel on Earth?

Let's look at that now...

What affects the size of centripetal force?

Newton's and Law tells you that the
centripetal force the astronaut experiences will be equal to his mass \times acceleration:

$$
\begin{aligned}
\mathbf{F}_{\mathrm{c}}=m \mathbf{a}_{\mathrm{c}} \longleftarrow & \text { The centripetal force depends } \\
& \text { on the centripetal acceleration. }
\end{aligned}
$$

You can write this because
the centripetal force is the net force that causes the centripetal acceleration.

The acceleration that the centripetal force causes is called centripetal
acceleration. Acceleration is the rate of change of velocity and points in the direction of that change:

You want the centripetal acceleration that the astronauts experience to be equal to $9.8 \mathrm{~m} / \mathrm{s}^{2}$. This makes the contact force each astronaut experiences in the space station the same size as the contact force he experiences on Earth.

But what affects the size of the centripetal acceleration? If you can work that out, you can get an equation for the centripetal acceleration and stop the astronauts going on strike!

The sketch here could either be of a carnival ride or a space station - imagine it in the way that seems most natural to you. There are two 'pods' attached to the circle, one twice as far from the center as the other.
The equation

from chapter

 16 shows you what happens to v when you vary r and ω.a. Bearing in mind that $v=r \omega$, draw in velocity vectors for the two pods at each position shown.
b. Which pod experiences the larger change in its velocity between the two positions?
c. Which pod experiences the greater centripetal acceleration between the two positions?

Solution

The sketch here could either be of a carnival ride or a space station - imagine it in the way that seems most natural to you. There are two 'pods' attached to the circle, one twice as far from the center as the other.
a. Bearing in mind that $v=r \omega$, draw in velocity vectors for the two pods at each position shown.
b. Which pod experiences the larger change in its velocity between the two positions?

Pod 2 (on the outside) has the bigger change in velocity because its velocity vectors are larger, but the change in direction is the same.
c. Which pod experiences the greater centripetal acceleration between the two positions?
Acceleration is rate of change of velocity. So pod 2 has the greatest centripetal acceleration since it has the greatest change in velocity.

d. Can you think of another way of increasing the centripetal acceleration that the pods experience (assuming each pod's radius is fixed)?
Spin the space station with a faster ω to increase all the velocities (as $v=r \omega$).

We're not looking for an equation for the centripetal acceleration
yet - just working out which variables it must depend on.
ω is the number of radians per second. ω can be called the angular frequency, or the angular speed. It is also sometimes referred to as the angular velocity, with the understanding that when the variable is written as a scalar, ω, it only refers to the size of the angular velocity, and not its direction. As we will often be moving between v, the size of the linear velocity and ω, we will often refer to ω as the angular velocity to make the connection clearer.

Centripetal acceleration depends on both the radius and the angular velocity, as both of these affect the rate of change of velocity.

For the same angular velocity, a larger RADIUS means a larger centripetal acceleration.

For the same radius, a larger ANGULAR VELOCITY means a larger centripetal acceleration.

Spot the equation for the centripetal acceleration

A larger centripetal acceleration is required to move something in a circle when the radius is large, and when the angular velocity is large, because the rate of change of velocity is larger in both cases.

Deriving the equation for the centripetal acceleration from scratch is tricky and doesn't really help your understanding of the physics. So instead, spot the correct equation by trying out extreme values and looking at its units.

Check an

 equation by thinking about EXTREMESand working out its UNITS.

You've done this kind of thing before, don't worry!

Equation ID Parade

Here are six equations that all claim to be a formula that gives you the size of the centripetal acceleration of something rotating with angular velocity ω at radius r.

Annotate the equations to explain what will happen if r gets much bigger, or if ω gets much bigger. Use this information to cross out any equations that don't behave as you would expect them to.

For your remaining equations, check that the units on both sides are the same. This should leave you with just one equation. (Remember that radians are dimensionless.)

$$
\begin{array}{lll}
a_{c}=\frac{r}{\omega} & a_{c}=\frac{\omega}{r} & a_{c}=r^{2} \omega \\
a_{c}=r \omega^{2} & a_{c}=\frac{\omega^{2}}{r} & a_{c}=\frac{r^{2}}{\omega}
\end{array}
$$

\dagger
These are all scalar equations as we're only talking about the SIZE of the centripetal acceleration.

Equation ID Parade SOLUTION

Here are six equations that all claim to be a formula that gives you the size of the centripetal acceleration of something rotating with angular velocity ω at radius r.

Annotate the equations to explain what will happen if r gets much bigger, or if ω gets much bigger. Use this information to cross out any equations that don't behave as you would expect them to.
For your remaining equations, check that the units on both sides are the same. This should leave you with just one equation. (Remember that radians are dimensionless.)

$a_{\text {a }}$ gets smaller as r gets
a gets larger as ω and r

RHS: Units $=m \times / s^{2}$

larger. So this is wrong.

there are no

Dumb Questions

QI got the equation ' $a_{c}=r \omega^{2}$ from the parade. Why doesn't the equation for ' $a_{c}^{\text {' ' have ' } v \text { ' in it, when acceleration is rate }}$ of change of velocity?
A: : Remember that $v=r \omega$. So you can make a substitution for the ' ω ' in ' $a_{c}=r \omega^{2}$ ' to express it as an equation that involves v.
> ω is the rate of change of the angle θ.

Q:OK ... so I make that substitution and get the equation $a_{c}=\frac{v^{2}}{4}$. But that can't be right! a_{c} should get larger as r gets larger. But you're dividing by r, so a_{c} would get smaller as r gets larger.

A:: But when r gets larger, v gets larger as well, because $v=r \omega$. And because the velocity is squared, the v^{2} on the top of the fraction gets larger more rapidly than the r on the bottom of the fraction. So overall, a_{c} still gets larger as r gets larger.

Q: But what if $r=0$ in $a_{c}=\frac{v^{2}}{T} ?$? m not sure I know how to divide by 0 !
A: : It's easier to look at the other form of the equation, $a_{c}=r \omega^{2}$. If $r=0$ then $a_{c}=0$.
Q: Isn't acceleration is usually a vector? Why is $a_{c}=r \omega^{2}$ a scalar equation gives the size but not the direction?
A: : The centripetal acceleration vector always points towards the center of the circle, so its direction is always changing. To avoid getting muddled up with direction, we're just dealing with scalar equations for the size of the acceleration.

Give the astronauts a centripetal force

The equation for the size of the centripetal acceleration is $a_{c}=r \omega^{2}$. The vectors \mathbf{a}_{c} and \mathbf{r} are always in opposite directions, but because the space station is spinning, we're using a scalar equation.

Newton's 2nd Law is $\mathbf{F}_{\text {net }}=m \mathbf{a}$. The centripetal force is the net force that must be present for an object to follow a circular path. A substitution gives you the size of the centripetal force:

It's good to appreciate the directions of the vectors even though the equation only opposite directions, their directions are always changing because the space station is spinning.

Sharpen your pencil

We're designing a spinning module for the existing space station, so that the astronauts can walk around. Two design candidates are cylinders with the same volume, but radii of 10.0 m and 100 m respectively.
a. Calculate the angular velocity required to produce a centripetal acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for (i) the 10.0 m radius module and (ii) the 100 m radius module.
ω can be called angular frequency, angular speed or angular velocity! It's always radians
per second.
b. If a door in the space station opened, and the astronaut went through, what velocity (size and direction) would he travel AT if he'd been in (i) 10.0 m radius module and (ii) the 100 m radius modules?

Solution

Were designing a spinning module for the existing space station, so that the astronauts can walk around. Two design candidates are cylinders with the same volume, but radii of 10.0 m and 100 m respectively.
a. Calculate the angular velocity required to produce a centripetal acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ for (i) the 10.0 m radius module and (ii) the 100 m radius module.
Centripetal force:
$F_{i}=m r \omega^{2}$
(i) For 10.0 m radius:
(ii) For 100 m radius:
Centripetal acceleration:
$F_{c}=m{ }_{c}$
$\omega=\sqrt{\frac{9.8}{10.0}}$
$\omega=\sqrt{\frac{9.8}{100}}$
ω

$\omega=0.990 \mathrm{rad} / \mathrm{s}(3 \mathrm{sd})$
$\omega=0.313 \mathrm{rad} / \mathrm{s}(3 \mathrm{sd})$
b. If a door in the space station opened, and the astronaut went through, what velocity (size and direction) would he travel AT if he'd been in (i) 10.0 m radius module and (ii) the 100 m radius modules?
(i) For 10.0 m radius:
(ii) For 100 m radius:

Hell keep on going with $v=r \omega=10.0 \times 0.990 \quad v=r \omega=100 \times 0.313$ the same velocity he
$v=9.90 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \quad v=31.3 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd}) \quad$ already had, at a tangent to the place he came out of the space station.

The astronauts want as much floor space as possible

The two space station module designs have the same volume $\left(90000 \mathrm{~m}^{3}\right)$ and need to be spun at similar angular velocities to produce the same centripetal acceleration. The 10.0 m radius space station needs to be spun at a rate of $0.990 \mathrm{rad} / \mathrm{s}$ and the 100 m radius station would be spun at a rate of $0.313 \mathrm{rad} / \mathrm{s}$.
How are you going to choose between the two competing designs? The astronauts can help. They want as much floor area to walk around on as possible. They really feel the need to stretch their legs and get some exercise when they've been in the space station for a while!

The velocity vector is always at a tangent to the circle.

Frank: Well, duh, the 100 m radius space station must have a bigger floor area than the 10.0 m radius one, as it's a bigger circle!

Jim: I'm not so sure. The floor is actually the side of the cylinder, not the circular part at the ends.

Frank: Ohhh ... good point. So how are we gonna do that? I don't think I know how to find the area of a curved surface!

Joe: Well, let's think this out. If we unroll the cylinder into simpler shapes what would they be?

Jim: OK, the cylinder's basically a circle at each end and a rectangle rolled around them. And we know how to find the area of a rectangle - job done!

Frank: Hold up ... how do we figure out the lengths of the rectangle's sides? We need those to calculate its area.

Jim: Well, one of the sides is easy it's the same length as the circumference.

But there's no mention of how long the other side is for either of the space stations. Houston, we have a problem!
Joe: We DO know that each space station has the same volume - $90000 \mathrm{~m}^{3}$. When something has straight sides and identical ends (like a cylinder), its volume is area of base \times height. So we can use that to work out the height?

Jim: That seems right... but the base is a circle. Which means we need to calculate the area of a circle. That's gotta be tricky ...

Here, the floor space is the area of a cylinder's curved surface

The astronauts want the design with the larger floor space - which means that you need to calculate the area of the curved surface of each cylindrical space station.

If you're calculating a surface area, it's best to 'unroll' the shape so that the surfaces are flat. When you do this, the curved surface becomes a rectangle. That's great, because you already know how to work out the surface area of a rectangle: width \times height.

One side of the rectangle is the same length as the circumference, and the other side is the height of the cylinder - so far, so good. But you don't know the cylinder's height, only its volume.

If you work out the volume, you can calculate the astronauts' floor space

If you have a 3D shape - like a cube or a cylinder - where the base and the top are the same shape with straight sides in between, its volume is (area of base) \times height.

You already know that both space stations are cylinders with volumes of $90000 \mathrm{~m}^{3}$. Which means that if you can work out the area of the base (i.e., the area of the circle), you can use the equation to determine the height of the cylinder. Which is great, as that's exactly what you need to calculate the astronauts' floor space.

Note the similarities between these If a 3D shape has twe equations two ends that are the same and straight sides between them, its volume is
(area of base) x height

Sharpen your pencil

1. To find a circle's area, you can chop it up into tiny segments and reassemble it into a rectangle. In terms of the circle's radius:

In terms of r :
a. What is the height of the rectangle?
b. What is the width of the rectangle?
c. What is the area of the rectangle (and therefore the area of the circle)?

Rearrange segments to make a rectangle.

2. Two cylinders each have a volume of $90000 \mathrm{~m}^{3}$.

a. The first cylinder has a radius of 10.0 m . What is the area of its circular base? What is its height?
b. The second cylinder has a radius of 100 m . What is the area of its circular base? What is its height?
c. What is the area of the curved surface of each cylinder... and which space station has a bigger floor area?

Sharpen your pencil Solution

1. To find a circle's area, you can chop it up into tiny segments and reassemble it into a rectangle. In terms of the circle's radius:

In terms of r :
a. What is the height of the rectangle?
b. What is the width of the rectangle?
c. What is the area of the rectangle (and therefore the area of the circle)?
a. The height is the radius $=r$
a. The height is the radius
b. The width is half the circumference $=1 / 2 \times 2 \pi r=\pi r$
c. The area is height \times width $=r \times \pi r=\pi r^{2}$
2. Two cylinders each have a volume of $90000 \mathrm{~m}^{3}$.

Rearrange segments
to make a rectangle.

a. The first cylinder has a radius of 10.0 m . What is the area of its circular base? What is its height?
b. The second cylinder has a radius of 100 m . What is the area of its circular base? What is its height?
c. What is the area of the curved surface of each cylinder ... and which space station has a bigger 'floor' area?
a. Area of base $=\pi r^{2}=3.14 \times 10.0^{2}=314 \mathrm{~m}^{2}(3 \mathrm{sd})$

Get height of cylinder from volume: volume $=$ area of base \times height
\Rightarrow height $=\frac{\text { volume }}{\text { area of base }}=\frac{90000}{314}=287 \mathrm{~m}(3 \mathrm{sd})$
b. Area of base $=\pi r^{2}=3.14 \times 100^{2}=31400 \mathrm{~m}^{2}(3 \mathrm{sd})$

$$
\text { height }=\frac{\text { volume }}{\text { area of base }}=\frac{90000}{31400}=2.87 \mathrm{~m}(3 \mathrm{sd})
$$

c. Curved surface is a rectangle: width $=$ circumference $=2 \pi r$ height $=$ height of cylinder For 10 m radius design: Floor area $=2 \times 3.14 \times 10.0 \times 287=18000 \mathrm{~m}^{2}(3 \mathrm{sd})$
For 100 m radius design: Floor area $=2 \times 3.14 \times 100 \times 2.87=1800 \mathrm{~m}^{2}(3 \mathrm{sd})$
The 10 m radius design has 10 times the floor space of the 100 m radius one.

The area of a circle $=\pi r^{2}$

Let's test the space station...

As the tall narrow space station module (the one with the 10.0 m radius that needs to rotate at around 1 $\mathrm{rad} / \mathrm{s}$) has the larger floor area, you go ahead and build a test rig for the astronaut to try out.

But weird things are happening! When the
But weird things are happening! When the
astronaut drops an apple, it doesn't fall as you'd expect. And the astronaut's not feeling well either.

What's going on?!

Sharpen your pencil

Jot down some ideas that might help to explain why weird things are going on.
Would using the 100 m radius space station design instead of the 10.0 m space
Don't worry if you're not sure why these things are happening - just throw some ideas around.

Sharpen your pencil
 Solution

Jot down some ideas that might help to explain why weird things are going on.

- Maybe his balance or stomach can't cope with high angular velocity. of reference, it looks like the apple follows a curved path. Which looks very weird!

Head and feet at different radii
The centripetal force depends on the radius and is larger the further away something is from the center. So the astronaut will experience a smaller force at his head than he does at his feet. Which will feel a bit weird!

- When he drops the apple, the space station keeps rotating, but the apple doesn't. So it looks like it follows a curved path.

Apple falls straight while space station rotates

Someone looking at the space station from outside will see the apple moving along a straight line. But to the astronaut in his rotating frame

Fewer uncomfortable things happen with the 100 m radius space station

The space station module with the 100 m radius only needs to rotate at $0.313 \mathrm{rad} / \mathrm{s}$, compared to the $0.990 \mathrm{rad} / \mathrm{s}$ of the module with the 10.0 m radius. This means that the astronaut has a much better chance of getting used to the rotation and feeling fewer ill effects.
The astronaut's head and feet are still different radii from the center of the space station, but compared to the radius of the wider space station, this difference is much less.

And when you drop an apple, the 100 m radius space station won't rotate through as great an angle as the 10.0 m radius space station, as the angular velocity is lower. Although the apple still won't fall exactly like it would on Earth, the curve in its path will be much less than it was.

You've sorted out the space station design!

Success! When you spin the 100 m radius test rig, the astronauts are able to walk around on the curved surface without too many ill effects!

Not only have you worked out how to provide 'aritficial gravity' in space, you've also managed to understand enough of the physics to choose between two competing space station designs.
Result!

That's it from Head First in Space for now .. though the astronauts are starting to mutter something about going to infinity and beyond?!

Sound exciting? Stay tuned!

Question Clinic: The "Centripetal force" Question

Any time an object follows a curved path, ask
yourself whether you may need to think about centripetal force.

Make sure you follow the instructions exactly!

Draw all the forces acting $O N$ the person. You know there will be a net centripetal force, but don't label the net force like that. Use a label like "contact force from side of car." This is the force required for the object to move in this way: $F_{c}=m r w^{2}$. You can move between the velocity (v) and the angular velocity (ω) using the equation $v=r w$. The larger the radius and the larger the angular velocity, the greater the force required.

This should immediately get you thinking about centripetal force.

Be careful about whether you are being given the RADIUS or the DIAMETER of the circle. Make sure you use the correct value for the radius later on!
2. A carnival ride rotates in a horizontal circle with diameter 20.0 m . People sit in cars on the outside of the circle.
a. Draw a free body diagram for someone sitting on the ride while it isn't moving.
b. Draw a free body diagram for someone sitting on the ride while it is moving. Clearly mark the center of the ride on your diagram.
c. How many revolutions per minute must the ride spin with tor the person in the car to experience a horizontal contact Draw all the forces acting ON the person. force equal to their weight?

Be careful with units. ω is measured in radians per second.

Don't worry if you don't know the mass. When you say mr $\omega^{2}=m g$, the m will divide out.

there are no Dumb Questions

Q:How should I include the centripetal force when l'm drawing a free body diagram?

A: A free body diagram shows all of the forces acting on a single object. So far, you know about gravitational force (a non-contact force) plus a variety of contact forces - normal force, frictional force, and tension force (exerted by a rope).

Q:None of these forces are the centripetal force though. How do I include the centripetal force on my free body diagram?

A:: If you have an object that's moving in a circle, you should include all the forces acting on the object in your free body diagram. When you add these forces together by lining them up nose to tail, there will be a net force on your object that makes it follow a circular path. This centripetal force (the force required to make the object follow a circular path) may be provided by a gravitational force, or a normal force, or a support force, or a tension force.

Q:Are you saying that I shouldn't draw an arrow on my free body diagram and label it centripetal force?

A: spot on! Your free body diagram should indicate the origin of each force vector arrow - gravitational force, normal force, frictional force, tension force, etc.

Centripetal force is the name given to the net force on an object when the net force is making the object follow a circular path. lt's not a "ghost force" that appears from nowhere on your free body diagram. So you're right you shouldn't ever label an arrow on your free body diagram "centripetal force," as this tells you nothing about the origin of the force.

QWhat if the net force doesn't cause the object to follow a circular path? A : Then it doesn't get called "centripetal force," as this its the term reserved for when the net force does make an object follow a circular path.

Your free body diagram should indicate the ORIGIN of each of the force vector arrows

- gravitational force, normal force, frictional force, tension force, etc.

The net force will provide the centripetal force. There shouldn't be any arrows on a free body diagram labelled 'centripetal force'.

Back to the track!

When you last checked in as the track's safety consultant, you were working out the speed the bobsled would have as it passed through various checkpoints.

But they just got a whole lot more ambitious ...

The bobsled needs to turn a corner

A bobsled isn't a train - you can't just point the track where you want the bobsled to go and expect it to follow! Since there's practically no friction between the bobsled and the ice, the bobsled would just slide straight on and demolish the hotdog stand!

How might you persuade the bobsled to take the corner instead of going straight on?
a. The 630 kg bobsled has dropped 50.0 m from a standing start between the beginning of the track and the corner. What is its current speed?
b. The radius of the corner is 80.0 m . What size of centripetal force is required for the bobsled to be able to make it round the corner?
c. In what direction does there need to be a centripetal force to make the bobsled turn the corner?
d. How might the track be modified to provide the force the bobsled needs to make the turn? Draw force vector components to illustrate where the required force could come from if the track was modified.

Hint: Think about the shape of a cycling velodrome or Indy car oval.

Sharpen your pencil

Solution

a. The 630 kg bobsled has dropped 50.0 m from a standing start between the beginning of the track and the corner. What is its current speed?

$$
\begin{aligned}
& \text { Use energy Conservation } \\
& u_{\text {top }}=K_{\text {bottom }} \\
& \Rightarrow \quad \eta i g h=1 / 2 \eta / v^{2} \\
& \Rightarrow \quad v=\sqrt{2 g h}=\sqrt{2 \times 9.8 \times 50.0} \\
& v=31.3 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

b. The radius of the corner is 80.0 m . What size of
 centripetal force is required for the bobsled to be able to make it round the corner?
Calculate centripetal force, F

$$
F_{c}=m r \omega^{2}
$$

Use $v=r \omega$ to work out ω

$$
\begin{aligned}
\Rightarrow \omega & =\frac{v}{r}=\frac{31.3}{80.0}=0.391 \mathrm{rad} / \mathrm{s} \\
F_{c} & =\operatorname{mr} \omega^{2}=630 \times 80.0 \times 0.391^{2} \\
F_{c} & =7710 \mathrm{~N}(3 \mathrm{sd})
\end{aligned}
$$

c. In what direction does there need to be a centripetal force to make the bobsled turn the corner?
There needs to be a centripetal force towards the center of the corner.
d. How might the track be modified to provide the force the bobsled needs to make the turn? Draw force vector components to illustrate where the required force could come from if the track was modified.

Banking the track towards the center of the corner to redirect the normal force might work, as there would be a component pointing towards the center of the corner.

> For the bobsled to go around a corner, you need a net force pointing towards the CENTER of the circle to provide a centripetal force.

Angling the track gives the normal force a horizontal component

There are two forces acting on the bobsled - its weight and the normal force. To make the bobsled turn the corner, you need to have a net force pointing horizontally towards the center of the circle, exerting a centripetal force on the bobsled that makes it turn.

The bobsled's weight points vertically downwards, so there's no way that any component of the weight can point horizontally. And if the track is horizontal, the normal force points verticallty upwards, with no horizontal component.

The normal force always acts perpendicular to the surface of the track. If the track is banked at an angle, towards the center of the circle, the normal force also points at an angle.

The normal force always acts PERPENDICULAR

to a surface.

Normal force
is perpendicular to track.

If you break the normal force down into horizontal and vertical components, the horizontal component points towards the center of the curve. This can provide the bobsled with the centripetal force it needs to take the corner instead of going straight on.
With the curve banked at the correct angle, the bobsled won't accelerate vertically and the net vertical force must be zero. Therefore, the vertical component of the normal force must have the same size as the bobsled's weight.

The only two forces with components perpendicular to the slope are the weight and the normal force. Therefore, the components of the weight and normal force, which are perpendicular to the slope, must add up to zero so that the net force is parallel to the slope.

When you turn a corner, there's no vertical acceleration
 \qquad

 The NET FORCE actsHORIZONTALLY.

For the bobsled to go round the corner, there must be a net horizontal force acting on it to provide the centripetal force it requires.
This means that the bobsled doesn't accelerate vertically, only horizontally. So the vertical components of the forces acting on the bobsled must add up to zero.

The bobsled doesn't float in the air, or go down into the ground. We don't want it to slide UP or DOWN the banking either.

The track needs to provide a horizontal force - or else the bobsled would tunnel through the track and hit the hotdog stand.

> There's no acceleration in the direction 90° to the net force. So the forces in that direction must add to zero.

The only two forces with vertical components are the bobsled's weight and the normal force. Therefore, the vertical component of the normal force and the weight must add to zero so that the net force is the horizontal centripetal force the bobsled requires to take the corner.
Not only does the track have to support the bobsled's weight, it also has to prevent the bobsled from tunneling horizontally through the track, and into the hotdog stand. This is why the normal force has a horizontal component. The horizontal centripetal force is provided by the horizontal component of the normal force.

Because the normal force is doing these two jobs (supporting the bobsled's weight and preventing it from tunneling through the track), the size of the normal force must be larger than the size of the bobsled's weight.

How to deal with an object on a slope

1. Start with a free body diagram

2. Work out the direction of the net force.

3. Draw in components parallel and perpendicular to the net force.

4. The components perpendicular to the net force must add to zero.

Download at WoweBook.Com

> Start off with a free body diagram and work out which components ADD T0 ZER0 before you draw in the components.

Q:How can I work out which force components add to zero when an object is on a slope?
A: - First of all, work out the direction of the net force. This is the direction that the object accelerates in. Then draw in components of forces parallel and perpendicular to the net force. The components perpendicular to the net force must add to zero.
Q: - How can the normal force from a track be larger than an object's weight?
A: : This can happen if the track is banked so that the object can take a corner. As well as providing a vertical force to support the object's weight, the track also needs to provide a horizontal force to stop the object from tunneling straight on through the track. So the total normal force - the normal force that the track exerts on the object - will have a vertical 'weight support' component and a horizontal 'anti-tunneling' component.

Q: How do you know the net force is horizontal for an object taking a corner?

A:: The net horizontal force provides the centripetal acceleration required for the object to take the corner.

Sharpen your pencil

You already worked this out earlier on.

A 630 kg bobsled traveling at $31.3 \mathrm{~m} / \mathrm{s}$ requires a horizontal centripetal force of 7710 N to make it go around a corner with a radius of 80.0 m at a constant speed. You can provide the centripetal force by banking the track.
a. Draw a free body diagram of the bobsled taking the corner on an angled track, showing all the forces acting on it.
b. What is the weight of the bobsled?
c. What do the horizontal and vertical components of the normal force need to be for the bobsled to go around the corner without sliding up or down the banking?
d. What angle should the track make with the horizontal to achieve this?

Sharpen your pencil
 Solution

A 630 kg bobsled traveling at $31.3 \mathrm{~m} / \mathrm{s}$ requires a horizontal centripetal force of 7710 N to make it go around a corner with a radius of 80.0 m at a constant speed. You can provide the centripetal force by banking the track.
a. Draw a free body diagram of the bobsled taking the corner on an angled track, showing all the forces acting on it.

b. What is the weight of the bobsled?

$$
\begin{aligned}
& \text { Weight }=m g \\
& \text { Weight }=630 \times 9.8 \\
& \text { Weight }=6180 \mathrm{~N}(3 \mathrm{sd})
\end{aligned}
$$

c. What do the horizontal and vertical components of the normal force need to be for the bobsled to go around the corner without sliding up or down the banking?

$$
\begin{aligned}
& \text { Horizontal component }=7710 \mathrm{~N} \text { (provides centripetal force) } \\
& \text { Vertical component }=\underline{=180 \mathrm{~N}} \text { (must be same size as weight - no } \\
& \text { acceleration in vertical direction) }
\end{aligned}
$$

d. What angle should the track make with the horizontal to achieve this?

These three angles add up to 180°.

Banking angle of track:

$$
\Rightarrow \theta=\tan ^{-1}(1.25)=51.3^{\circ}(3 \mathrm{sd})
$$

$$
\tan \theta=\frac{0}{a}=\frac{7710}{b 180}=1.25(3 \mathrm{sd})
$$

See page 562 of chapter 14 for help with setting up triangles like this.

Dumb Questions

Q:So - what if the bobsled was going faster or slower? Would the banking angle need to be different?

A:: You originally worked out the required centripetal force using the bobsled's velocity and the radius of the curve. If the bobsled was going faster or slower, it would require more or less centripetal force.

Q:If the bobsled has a lower mass, will it require a smaller centripetal force?
$A:$
Yes, that's right. But as the bobsled's weight is less, the normal force will also be less, and the banking angle will work out the same. The banking angle doesn't depend on the bobsled's mass - only on the bobsled's speed and the radius of the corner.

Q: So could the bobsled just go round and round forever if I closed off the curve to make a circle?
A - If there was no friction, then it could, but there's always some friction somewhere to transfer kinetic energy to internal energy. So it couldn't keep on going forever.

Banking the track works ...

Banking the track at 51.3° like you calculated does the trick! The hotdog stand is saved, and everyone at the bobsled track is happy. Though they've just come up with something even more ambitious ...

but now they want it to loop-the-loop!

Inspired by the success of your corner, you've just been asked if you can make the bobsled loop-the-loop at the end of the track!

As the bobsled is traveling in a circle (just like it was for the corner), the track designers are confident that you can make it work ...

Are horizontal and vertical circles the same? Try it! Tie an object to the end of a piece of string, and swing it as slowly as possible in horizontal and vertical circles. Feel what happens to the tension in the string as the tension provides a centripetal force.

How does the tension in the string vary at different points as you swing the object in horizontal and vertical circles? Do you need to pull harder or more gently when the object's at the top or bottom of the circle?

The "support force" normal force or tension force required for a vertical circle varies

For an object moving in a horizontal circle, the tension in the string provides the centripetal acceleration to keep the object moving. If the object moves at a constant speed, the tension remains constant.

For a vertical circle, the tension in the string is less at the top of the circle than it is at the bottom - as long as the speed of the object remains the same throughout.

This is the same as for the horizontal corner. The banking angle was the same all the way round, providing the same horizontal component of the normal force all the way round.

At the top of the circle, the force of the

You might have observed the object on the string kind-of "falling over the top" as you swung it slowly.

You might have noticed the object on the string "pulling against you" when it swung round the bottom of the circle.

> At the top of the circle, the object's WEIGHT is able to provide some of the centripetal force, as the weight vector points towards the CENTER of the circle.

At the top of the circle, the object has a horizontal velocity. Without the string, the object would follow a curved path anyway (just not a circular one).

This exercise lets you get the hang of dealing with vertical circles before you tackle the bobsled track.

Centripetal force is required for circular motion and provided by existing forces

You mustn't think of centripetal force as a 'ghost force' that appears from nowhere when an object moves in a circle. Circular motion is only possible if a force capable of providing the centripetal force is already present.

At the top of the circle, the centripetal force can actually be entirely provided by the gravitational force, as it points towards the center of the circle. At the minimum speed for circular motion, the gravitational force, $m \mathbf{g}$, will provide all of the required centripetal force, so will be equal in size to $m r \omega^{2}$.
a. Write down an equation that relates the mass of the bucket, the length of your arm and the size of the required centripetal force.
b. If your arm has length r, what's the minimum speed, v, you need to swing it at so that you don't get wet when the bucket passes over your head?

At the minimum speed, the centripetal force is provided entirely by the gravitational force.
c. In terms of m and \mathbf{g}, what force does the base of the bucket exert on the water at the top of the circle?
d. In terms of m and \mathbf{g}, what force does the base of the bucket exert on the water at the bottom of the circle if you swing it at the same velocity round the whole circle?

Your arm exerts a force on the bucket - and the base of the bucket transmits that force to the water.

Draw a free body diagram to work each of these out! Look at the ones on the opposite page to help you. you are here 705 Download at WoweBook.Com

You want to swing a bucket of water, mass m, in a vertical circle at a constant speed, v.

a. Write down an equation that relates the mass of the bucket, the length of your arm and the size of the required centripetal force.

$$
\begin{aligned}
F_{c}= & m r \omega^{2} \\
& m \text { is mass of bucket. } \\
& r \text { is length of arm. } \\
& \omega \text { is angular velocity. }
\end{aligned}
$$

c. In terms of m and \mathbf{g}, what force does the base of the bucket exert on the water at the top of the circle?

Tension of force of string on bucket transmitted to water by base of bucket.

Weight $=m g$
b. If your arm has length r, what's the minimum speed, v, you need to swing it at so that you don't get wet when the bucket passes over your head?

$$
\begin{aligned}
& F_{c}=m r \omega^{2} \\
& v=r \omega \Rightarrow \\
& F_{c}=\frac{m v^{2}}{r} \\
& \text { Minimum force }=m g=F_{c} \\
& \omega=\frac{v}{r} \\
& \Rightarrow m Q=\frac{i v^{2}}{r} \\
& v^{2}=g r \\
& v=\sqrt{g r}
\end{aligned}
$$

d. In terms of m and \mathbf{g}, what force does the base of the bucket exert on the water at the bottom of the circle if you swing it at the same velocity round the whole circle?

Your free body diagram is key

When you draw a free body diagram, take special note of the forces pointing towards the center of the circle. These have the potential to contribute towards a net centripetal force that makes an object follow a circular path.
For the bobsled, the normal force from the track will point towards the center of the circle.

Any force that acts towards the center of the circle can provide a centripetal force

Tension force provided by string acts towards center of circle.

For an object on a string at the top of a circle, there are two forces that can point towards the center of the circle and, therefore, contribute towards a net centripetal force in that direction. One is the tension force from the string, and the other is the gravitational force - the object's weight.

The tension force + the component of the gravitational force that points towards the center of the circle will always add up the centripetal force required to move the object at that speed around a circle with that radius.

> The components of all the forces that point towards the center of the circle must add up to the centripetal force.

Think of the normal force provided by the track as an "antitunneling" force that stops the bobsled from tunneling through the track.

The bobsled's free body diagram is nearly identical to the object on the string, except that it's the normal force from the (circular) track that points towards the center of the circle instead of a tension force.

You can think of the normal force as an "anti tunneling" force. If the bobsled is going upwards with a high speed and the track is soft and can't provide enough normal force, the bobsled will tunnel into - and probably through - the track. The normal force provided by a solid track prevents the bobsled from tunneling, and provides some of the centripetal force that the bobsled requires to follow a circular path.

Q:So how can the gravitational force provide a centripetal force?! Surely if that was happening, the bobsled would just fall straight down, off the track.

A:: To make it around the loop, the bobsled must already be traveling very fast horizontally when it gets to the top of the circle. So it couldn't possibly fall straight down - even if the track wasn't there, it would move through the air like a projectile.

Q: But what if the bobsled wasn't going fast enough at the top of the loop?
A : Then there wouldn't be enough centripetal force to keep the bobsled on the track - it would curve down towards the ground faster than the curve of the track, and fall off the track.

Q:How do I know if the bobsled's going fast enough or not?

A:The size of the centripetal force is given by the equation $F_{c}=m r \omega^{2}$, which can also be written $F_{\mathrm{c}}=\frac{m v^{2}}{r}$ by making a substitution using the equation $v=r \omega$.

The faster the bobsled's going, the larger the centripetal force required to make it travel in a circle with radius t.

Q: Doesn't that equation give you the value of the centripetal force?

A: Not quite. The equation gives you the value of the centripetal force that is required for the bobsled to move in that way. If the net force on the free body diagram isn't large enough, then the bobsled won't get round the loop safely.

QWhat else might the centripetal force be provided by, apart from gravity?

A::The normal force from the track always points perpendicular to the track. So when the bobsled is upside-down, the normal force points down.

Think of the normal force as an "antiburrowing" force that prevents the bobsled from burrowing through the track if it's going really fast.

Q: How can I work out whether the track is safe or not?
A : Your job is to calculate the minimum speed that the bobsled needs to be going at to get around the loop safely. Which we're just getting on to now ...

Your job is to calculate the minimum speed that the bobsled needs to be going at to make it around the 7.00 m radius loop.

At the top of the circle, the bobsled's weight points towards the center and can provide all the centripetal force the bobsled needs to go in a circle - as long as it's going at just the right speed.

How fast does the bobsled need to go?

 needs to be going at to make it -Bobsled starts off high to build up as much speed. as it needs.

The required centripetal force depends on the radius and speed.

Hint: You have various
differences in height here..

A 630 kg bobsled is to do a loop-the-loop. The loop has a 7.00 m radius at its top, which is 20.00 m higher than the bottom of the loop. The bobsled can start as high as you want it to above the bottom of the loop.
a. What is the minimum speed the bobsled needs to have at the top of the loop in order to make it around the loop successfully?
b. What speed does the bobsled need to have when it enters bottom of the loop in order to achieve this?
c. What is the minimum height the bobsled needs to start at to achieve these speeds?
d. Now assume that the bobsled is traveling at $10.0 \mathrm{~m} / \mathrm{s}$ at the top of the loop (instead of the speed you calculated in part a). How large is the normal force that the track exerts on it?

The normal force
is like an "anti-
tunneling" force
that provides a
centripetal force
and makes the
bobsled follow the
track instead of
tunneling straight
through the track.

Sharpen your pencil Solution

A 630 kg bobsled is to do a loop-the-loop. The loop has a 7.00 m radius at its top, which is 20.00 m higher than the bottom of the loop. The bobsled can start as high as you want it to above the bottom of the loop.
a. What is the minimum speed the bobsled needs to have at the top of the loop in order to make it around the loop successfully?

$$
\begin{aligned}
& F_{c}=m r \omega^{2} \\
& v=r \omega \Rightarrow \omega=\frac{v}{r} \\
& F_{c}=\frac{m v^{2}}{r}
\end{aligned}
$$

At minimum speed, all of F_{c} provided by weight.

$$
\begin{aligned}
F_{c} & =\frac{m v^{2}}{r} \\
\Rightarrow m g & =\frac{m v^{2}}{r} \\
v^{2} & =g r \\
v & =\sqrt{g r}=\sqrt{9.8 \times 7.00}=8.28 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

b. What speed does the bobsled need to have when it enters bottom of the loop in order to achieve this?

c. What is the minimum height the bobsled needs to start at to achieve these speeds?

Energy Conservation:

We've used the subscript ' 0 ' to mean the initial conditions 7

$$
\begin{aligned}
u_{0} & =K_{b} \\
i \operatorname{igh} & =1 / 2 \operatorname{in} v_{b}{ }^{2}
\end{aligned}
$$

atthe start of the track.

$$
h=\frac{1 / 2 v_{b}^{2}}{9}=\frac{0.5 \times 21.5^{2}}{9.8}=23.6 \mathrm{~m}(3 \mathrm{sd})
$$

d. Now assume that the bobsled is traveling at $10.0 \mathrm{~m} / \mathrm{s}$ at the top of the loop (instead of the speed you calculated in part a). How large is the normal force that the track exerts on it?
\square

$$
F_{c}=\frac{m v^{2}}{r}=\frac{630 \times 10^{2}}{7.00}=9000 \mathrm{~N}(3 \mathrm{sd})
$$

$F_{c}=$ weight + normal force $=m g+F_{N}$

$$
F_{N}=F_{c}-m g=9000-630 \times 9.8=2830 \mathrm{~N}(3 \mathrm{sd})
$$

\qquad
Normal force stops bobsled burrowing on upwards.

Question Clinic: The "Banked curve" Question

The banked curve question tests your understanding of

Don't forget to say that the direction is horizontal, towards the center of the circle that the bend forms part of. forces, free body diagrams, components, Newton's laws, circles, and trigonometry - all in all, a good and varied workout! Usually, you'll need to calculate the centripetal force required in order for the object to make it around the curve, then make this equal to the net force that points towards the center of the circle, which comes from the horizontal component of the normal force.

Keep the mass as ' m ' for the moment, to avoid numerical errors. It'll divide out later on, when you equate the centripetal force to the horizontal component of the normal force.
3. A 630 kg bobsled traveling $8431.3 \mathrm{~m} / \mathrm{s}$ needs to go around

These figures give you the information you need to calculate the centripetal force, $F_{c}=m r \omega^{2}$ 3. A 630 kg bobsled traveling $8 \mathrm{~m} / 3$ a corner with a radius of 80.0 m at a constant speed.
a. What size and direction of centripetal force is required for the bobsled to be able to make it round the corner?
b. You can provide the required centripetal force by banking the track. Explain, using a diagram, why this is the case.
c. What angle-sioutd the track make with the horizontal to provide the centripetal force that is required?

This means draw a free body diagram and show that the vertical components of the forces add to zero, leaving a net horizontal force that can provide the centripetal force.

Some questions may be about centripetal acceleration instead of centripetal force. Use Newton's Ind Law, $F=$ ma to move between these two things.

Make sure you calculate the correct angle! Spot similar triangles then think to see if your answer SUCKs.

Any time you're dealing with a slope, start with a free body diagram and work out which direction there's no acceleration in. Then resolve your force vectors into components parallel and perpendicular to this direction. In the banked curve question, there's no acceleration in the vertical direction - which helps you to see that it's the horizontal component that you need to make equal to the centripetal force.

Question Clinic: The "Vertical circle" Question

2. A 630 kg bobsled is to do a logp-the-loop. The loop has a 7.00 m

This is the value of radius you'll

The mass will divide out when you make the centripetal force equal the net force on your free body diagram. force

This is when all the centripetal force is provided by the bobsled's weight.

This involves energy conservation.
a. What is the minimum speed the bobsled needs to have at the top inorder is make it around the loop successfully?
b. How fast does the bobsled need to be going when it enters the bottom of the loop in order to achieve this?
c. What is the minimum height the bobsled needs to start at to achieve the espeeds?
d. Now assume that the bobsled is traveling $10.0 \mathrm{~m} / \mathrm{s}$ at the top of the loop (instead of the speed you calculated in part a). How large is the normal force that the track exerts on it?

You need to redo everything as the required centripetal acceleration for this speed will be greater. Part will come from its weight, and part from a normal force exerted by the track.

Centripetal force

VAngular $\begin{gathered}\text { Anglocity } \\ \text { velor }\end{gathered}$

The net force required to make an object travel along a circular path. Always points towards the center of the circle. Size given by $F_{c}=\mathbf{m r} \boldsymbol{\omega}^{\mathbf{2}}$

The size of the angular velocity is exactly the same as the angular frequency or angular speed.

Your Physics Toolbox

 You've got Chapter 17 under your belt andadded some terminology and problem-
solving skills to your tool box.

"What's pushing me?"

This is the question you need to ask yourself in order to spot the contact forces that are present. Shut your eyes and think "What's pushing me?"
You can't experience a noncontact force (such as your weight) in this way.

Don't talk about this. Naughty!! how to deal with.
Area of circle $=\pi r^{2}$ base and top:

Freefall

Something is said to be in freefall when the only force acting on it is its weight.
Examples of objects in freefall are a parachute jumper (if there's no air resistance) and an object orbiting the Earth.

Volumes and areas

If you have a 3D shape, try to unfold it into 2D shapes you know

For a 3D volume with straight sides and the same shape of flat

Volume $=$ area of base \times height

Centripetal force

The force required to move an object round a curved path.
A greater centripetal force is required for a higher speed or a larger radius.

$$
\begin{aligned}
\text { Equation: } F_{c} & =m r \omega^{2} \\
\text { with } v & =r \omega .
\end{aligned}
$$

Solving problems that involve a slope
Start with a free body diagram
Work out the direction of the net force (the direction that the object accelerates in).
Draw on components parallel and perpendicular to the net force.
The components perpendicular to the net force must add up to zero.

Solving centripetal force problems

Start with a free body diagram The centripetal force doesn't appear from nowhere - it's the NET FORCE on your free body diagram and it acts towards the CENTER of the circle.

18 gravitation and orbits

+Getting away from it all

So far, you've been up close and personal with gravity - but what happens to the attraction as your feet leave the ground? In this chapter, you'll learn that gravitation is an inverse square law, and harness the power of gravitational potential to take a trip to infinity... and beyond. Closer to home, you'll learn how to deal with orbits - and learn how they can revolutionize your communication skills.

Party planners, a big event, and lots of cheese

The local party planner is in need of your help. They're catering a big event, and the centerpiece is a huge, innovative globe of cheese.

But there's more... the planner has sent over instructions.

The notes include a cross-section of the cheese globe.

Once-in-a-lifetime cheese globe

The center of the cheese globe is an orange.

Cocktail sticks are inserted into the center of the orange, and

Assume You've got a machine that can put the sticks in the orange at regular intervals. radiate outwards. At the outer ends of the sticks are blocks of cheese, all around the outside of the globe. The cheese forms a "shell" around the orange.

Cheese blocks must be 2.0 cm by $2.0 \mathrm{~cm} \times 0.50 \mathrm{~cm}$, with the
 square face outwards. Each cheese globe should have 500 blocks.

Each stick should protrude by 2.0 cm from the end of the cheese block, so party-goers can easily remove a block from the cheese globe.

THERE MUST BE NO GAPS VISIBLE BETWEEN THE BLOCKS OF CHEESE. THIS IS CRUCIAL!

The party planner already has a machine that will put cheese blocks onto cocktail sticks with 2.0 cm sticking out at the end. The machine is also able to put all 500 cocktail sticks into the center of the orange so that they're evenly spaced. You don't need to worry about how to do any of that.

What length should the cocktail sticks be?

Your job is to calculate the length that the cocktail sticks should be. If the sticks are too short, there won't be space for you to fit on all 500 pieces of cheese, as the sticks won't spread out enough for the pieces of cheese to fit on next to each other.
But if the sticks are too long, they'll spread out too much and

Frank: We already have a machine that can slam 500 cocktail sticks into an orange with equal spacing? Cool or what!

Jim: Yeah, the ends of the sticks all meet in the center of the orange. That's not a problem. But we don't know the length that each cocktail stick should be.

Frank: We could try an experiment - y'know, use really long sticks and slide the cheese blocks up and down the sticks by hand until there aren't any gaps. Then we could measure how far the blocks are from the center of the orange.

Jim: That sounds like it would work, sure.
Joe: But what if the party planners change the number of cheese blocks or want a different size of block in the future? We'd have to do all of that work again! We need to future-proof our solution.

Jim: That's true. If this is a success, the planners will want to milk this cheese globe for all it's worth. There must be a butter way.
Joe: Can we come up with an equation that tells us what length of cocktail stick to use? Frank: OK, let's think about that. What's the cheese globe like?

Jim: Well, the finished cheese globe kinda looks like the cheese has coated a soccer ball with a bunch of little spikes s

> Start solving a new problem by asking yourself, "What is this problem LIKE?" (

The cheese globe is a sphere.

Joe: Right, the cheese globe's basically a sphere.
Jim: So maybe the volume that each cheese block takes up is important ...

Joe: ... or maybe the surface area of the cheese blocks is important ...

The cheese globe is a sphere

Because you start with a spherical orange and put all the cocktail sticks in the same distance, the cheese also makes a sphere shape. The larger the radius of the sphere, the larger the surface area, and the larger the volume.

But is it the surface area of the sphere that's important, or the volume ... or both? How are you going to figure that out?

If a sphere has a big radius, then it also has a big surface area and a big volume.

Sharpen your pencil

A single block of cheese has dimensions of 2.0 cm by 2.0 cm by 0.50 cm . You have 500 of them.
a. Calculate the total volume of the cheese blocks in cm^{3}.
b. Calculate the area in cm^{2} that the cheese blocks occupy when you arrange them on a flat surface with the square side of each block facing upwards.
c. Do you think the volume of the cheese blocks or their surface area - or both - is important for working out how long to make the cocktail sticks? Give a reason for your answer.
d. What other information might you need to be able to solve this problem?

A single block of cheese has dimensions of 2.0 cm by 2.0 cm by 0.5 cm . You have 500 of them.
a. Calculate the total volume of the cheese blocks in cm^{3}.

Volume of I block $=$ length \times width \times height $=2.0 \times 2.0 \times 0.50=2.0 \mathrm{~cm}^{3}(2 \mathrm{sd})$
Volume of 500 blocks $=500 \times 2.0=1000 \mathrm{~cm}^{3}(2 \mathrm{sd})$
b. Calculate the area in cm^{2} that the cheese blocks occupy when you arrange them on a flat surface with the square side of each block facing upwards.
Surface area of 1 block $=$ length \times width $=2.0 \times 2.0=4.0 \mathrm{~cm}^{2}(2 \mathrm{sd})$
Surface area of 500 blocks $=500 \times 4.0=2000 \mathrm{~cm}^{2}(2 \mathrm{sd})$
c. Do you think the volume of the cheese blocks or their surface area - or both - is important for working out how long to make the cocktail sticks? Give a reason for your answer.

I think the surface area is important, because the blocks have to cover a surface without any gaps in between them, not fill up a volume. The volume isn't important.
d. What other information might you need to be able to solve this problem?

An equation for the surface area of a sphere would be useful.

The surface area of the sphere is the same as the surface area of the cheese

If you were making a solid sphere of cheese, then the volume of the cheese and sphere would need to be equal.
But the cheese makes a spherical 'shell' - not a filled-in sphere. Therefore, the surface area of the cheese will be the same as the surface area of the sphere that it's coating.
Your table of information gives you an equation for the surface area of a sphere: $S=4 \pi r^{2}$.

Sharpen your pencil

You have 500 cheese blocks, measuring 2.0 cm by 2.0 cm by 0.50 cm , and are required to make a cheese sphere. You have 500 cocktail sticks, which start in the center of an orange and are equally spread across the orange. 2.0 cm of each stick should be visible on the outside of the sphere.
a. What length should the cocktail sticks be if the 500 pieces of cheese are to be arranged so as to leave no gaps in the surface of the cheese sphere?
b. Now, suppose you have 2000 pieces of cheese the same as before -4 times as many. Without redoing the calculations you did above, use the equation for the surface area of a sphere to explain what radius of cheese globe you'd be able to make while leaving no gaps.

Sharpen your pencil
 Solution

You have 500 cheese blocks, measuring 2.0 cm by 2.0 cm by 0.50 cm , and are required to make a cheese sphere. You have 500 cocktail sticks, which start in the center of an orange and are equally spread across the orange. 2.0 cm of each stick should be visible on the outside of the sphere.
a. What length should the cocktail sticks be if the 500 pieces of cheese are to be arranged so as to leave no gaps in the surface of the cheese sphere?

Inside surface of cheese coats a sphere. You need to surface area of sphere $=$ surface area of cheese remember the

$$
\begin{aligned}
\Rightarrow 4 \pi r^{2} & =2.0 \times 2.0 \times 500 \\
r & =\sqrt{\frac{2000}{4 \pi}}=12.6 \mathrm{~cm}(3 \mathrm{sd})
\end{aligned}
$$

owe the cheese as well as the bit at the end!

Length of cocktail stick:
Need to include 2.0 cm at end, and thickness of cheese.

Length $=12.6+0.5+2.0=15.1 \mathrm{~cm}(3 \mathrm{sd})$
b. Now, suppose you have 2000 pieces of cheese the same as before -4 times as many. Without redoing the calculations you did above, use the equation for the surface area of a sphere to explain what radius of cheese globe you'd be able to make while leaving no gaps.
The surface area is proportional to r^{2}, as $S=4 \pi r^{2}$. If S is 4 times larger, then $4 \pi r^{2}$ will be four times larger. But 4 and π are constants. Thereforce r^{2} must be 4 times larger, so r must be 2 times larger
Inner radius $=12.6 \times 2=25.2 \mathrm{~cm}$.

Q:
How can I tell whether it's the volume or surface area that's important?

A:: Ask yourself - "What's it like?" Here, arranging the cheese is like coating the surface of a soccer ball. This means that the surface area of the cheese is important.

If you were melting the cheese and filling the volume of a soccer ball, then the volume of the cheese would be the important thing.

Q:- I thought that 3D objects have volumes, not surface areas?

AAnything you can paint has a surface area - or else there'd be nowhere for the paint to go! A sphere has a surface area. It's a curved surface - and one you can't flatten out properly - but it's a surface nonetheless.

QHow do you know what happens to the area when you change the radius?

A$:$ In the equation $S=4 \pi r^{2}$, the area is proportional to r^{2}. If you double the radius, you quadruple the surface area, as $2^{2}=4$ Think about it like this: if the old radius is y and you double it, the new radius is $2 y$.
Old: $S=4 \pi y^{2} \longleftarrow$ Old surface area. New: $S=4 \pi(2 y)^{2}=4 \pi 4 y^{2}=4 \times 4 \pi y^{2} \leftharpoonup$
So when you double the radius, the new surface area is four times the old surface area.

Let there be cheese...

Give your solutions to the party planners, and let's see what they come up with.

...but there are gaps in the globe!

Sharpen your pencil

Your solution on the opposite page is correct, but the party planners have gone wrong somewhere.
Circle the mistake in the notes that the machine programmer made and explain what went wrong.

Cheese globe notes

Set machine to put 500 sticks into orange, evenly-spaced with ends of sticks in center.
Machine puts 2.0 cm by 2.0 cm by 0.5 cm blocks on sticks, square side up, with 2.0 cm of stick protruding.
Set stick length so that 15.1 cm of stick is visible outside orange.

Press go.

Sharren your pencil
 Solution

Your solution on the opposite page is correct, but the party planners have gone wrong somewhere.
Circle the mistake in the notes that the machine programmer made and explain what went wrong.

Cheese globe notes

Set machine to put 500 sticks into orange, evenly-spaced with ends of sticks in center. Machine puts 2.0 cm by 2.0 cm by 0.5 cm blocks on sticks, square side up, with 2.0 cm of stick protruding.
Set stick length so that 15.1 cm of stick is visible outside orange.

Press go.

This is the dstance you calculated to be 15.1 cm - the length of the entire cocktail stick - the RADIUS of the sphere. to the tips of the sticks.

Accidentally working with the distance from the surface instead of the radius - or vice-versa - is a common mistake.

I worked out the the sticks need to have a TOTAL length of 15.1 cm .
But the party planner has made 15.1 cm of stick visible on the outside of the orange. This means that the sticks will be too long, as they will have alength of $15.1 \mathrm{~cm}+$ radius of orange.
If the sticks are too long, there will be gaps between the blocks of cheese.

The party planners had programmed their machine incorrectly, using the distance from the surface of the orange.

They should have used the radius - the distance from the center.

Fortunately, it was only a prototype, and you soon have them back on track ...

The party's on!

The party planners are thrilled. In fact, they've already had more orders for different size cheese globes

With an ability to churn out different sizes thanks to your flexible equation for working out cocktail stick sizes, you're ready to turn these unique (and spiky) cheese globes into big business.

BULLET POINTS

 We've included a section\qquad like this in appendix ii.

- If you're working with a 3D shape, think about whether it's surface area or volume that's important.
- If the shape will 'unroll' flat, you can work out its surface area by turning it into 2 D shapes.

You did this
in chapter 17.
\qquad
\qquad

To infinity - and beyond!

The lead astronaut on the Head First space station has been chosen to boldly go where no man has gone before - to the edge of the solar system! Your job is to work out how to get him there.

The spaceship's acceleration due to gravity doesn't depend on its mass. So you don't need to worry about the mass of the spaceship changing as it burns fuel.

When you launch an object directly upwards, sooner or later it comes back down. If the astronaut is to make it to the edge of the solar system, he needs to be able to keep on going and going - without being brought back down to Earth!

Since you're able to use a spaceship, this sounds easy at first - but you can't accelerate forever, as you'd run out of fuel! Your best strategy is to blast off to achieve as high a velocity as possible - after all, the greater the upwards velocity, the greater the time an object will spend away from the Earth.

You need to calculate the escape velocity for the Earth - the velocity that the astronaut needs to reach at the start when he's close to Earth so as to not fall back down again. (You may need to work out other things for later on in the mission, but the escape velocity for the earth is enough to be getting on with for now!)

Jim: Yeah, we just need to run the spaceship's engine as hard as possible for as long as possible. That gives the astronaut the largest possible velocity at the start - and the best chance of making it.

Joe: But how do we guarantee that's going to be good enough? What if the astronaut falls back down to Earth again, like a football does when you throw it up in the air?

Frank: Well, let's work it out. I looked up the distance to Pluto's orbit, and it's around $6 \times 10^{12} \mathrm{~m}$..

Jim: ...and acceleration due to the Earth's gravity is $9.8 \mathrm{~m} / \mathrm{s}^{2} \ldots$

Frank: Wait ... you mean negative $9.8 \mathrm{~m} / \mathrm{s}^{2}$, right? The acceleration needs to be negative if we're calling "away from the Earth" the positive direction.

Joe: OK, so we know the displacement and the acceleration, and let's say that he needs to have a velocity of $0 \mathrm{~m} / \mathrm{s}$ when he reaches Pluto's orbit. That's the smallest velocity he could have by that point and still make it.

Jim: Let's get on with the calculation!

This distance is a million times grater than the radius of the Earth, and only has one significant digit. So it doesn't really matter if this distance is measured from the center or the surface of the Earth.

a. Pluto's orbit is $6 \times 10^{12} \mathrm{~m}(1 \mathrm{sd})$ from Earth. If the acceleration due to the Earth's gravity is constant throughout the journey, work out the velocity that a spaceship needs to have at the start in order to escape from Earth.
b. How practical does your answer feel to you?

Your equations of

 motion only work if the acceleration is constant.Jim: Yeah, you can't get a spaceship - or anything else to go faster than the speed of light!

Frank: But real space probes have gone past Pluto and even left the solar system before. So it must be possible ...
Joe: What if the effect of the Earth's gravity gets less as you go further away?
Frank: How do you mean?
Joe: Well, sounds are quieter if you're further away from their source. And lights are less bright. Maybe it's the same with gravity.

Jim: You mean your acceleration due to gravity might get smaller as you move further away?

Frank: Oh yeah ... the equations of motion we used assumed that the acceleration due to gravity was constant for the whole journey

Jim: Good point. If the acceleration changes as you get further away, we can't use those equations of motion - they only work for a situation with constant acceleration.

Joe: Let's try to work out how the acceleration changes as you get further away from the Earth ...

Earth's gravitational force on you becomes weaker as you go further away

When you're near the Earth, you experience a gravitational force because the stuff you're made of and the stuff the Earth's made of attract each other. But as the distance between you and the Earth increases, the gravitational force gets weaker. In the same way, sounds get quieter and lights get less bright as you increase the distance between yourself and the source of the sound or light.

As the gravitational force on you gets smaller, your acceleration due to gravity also decreases (as $\left.\mathbf{F}_{\text {net }}=m \mathbf{a}\right)$. So your acceleration isn't constant. That means you can't use your equations of motion here, as they only work when the acceleration is constant.

But how does the gravitational force change as you get further away?

The brightness of a light becomes less as you get further away. In this picture, you have a spherical light that emits light equally in all directions, and you look at it with your eye from two different distances. Assume that the pupil of your eye (the bit that lets the light in) has the same area at both distances.

Explain why the light appears dimmer when you are further away.

The brightness of a light is something that becomes weaker as you get further away. In this picture, you have a spherical light that emits light equally in all directions, and you look at it with your eye from two different distances. Assume that the pupil of your eye (the bit that lets the light in) has the same area at both distances.

Explain why the light appears dimmer when you are further away.

As the light goes away from the bulb, it spreads out more.

The close eye has all the light within the two heavy lines going into it.

The far away eye only has a part of this light going into it - so the bulb looks dimmer from further away.

At distance r_{1}, all of the light coming from the bulb is spread out over the area $4 \pi r_{1}{ }^{2}$.

At distance r_{2}, the light is spread out over the area $4 \pi r_{2}{ }^{2}$.
The same amount of light it spread out over each surface. However, at a greater distance there's less light available per square meter, as there are more square meters of surface for the light to spread out over. So the light looks less bright from further away.

> The further you are from a light, the greater the SURFACE AREA it's spread over.

Download at WoweBook.Com

Light intensity and gravitational field strength both depend on the surface area of spheres.

You have been representing light using rays that start in the center and spread out. The rays show you the direction that the light is traveling in.

As light rays spread out, the surface area that the light's spread over increases. So the intensity of the light decreases.

You can represent the Earth's gravitational field in a similar way by using gravitational field lines. The lines show you the direction an object will accelerate in if the gravitational force is the only force acting on it. The object will accelerate along a line, moving closer to the Earth.

As the gravitational field lines spread out, the surface area of a sphere at that radius increases. So the gravitational field strength decreases.

The gravitational field strength is another name for the acceleration due to gravity.

Gravitational field lines show you the DIRECTION that an object will accelerate in.

r_{1} and r_{2} are radius vectors pointing away from the center of the sphere. Most of the time we are interested in the distance, buit sometimes we will be interested in the direction, as r is in the opposite direction from the acceleration caused by the gravitational field.

The field lines themselves don't physically exist. The field lines are a tool you can use to help you visualize what happens to the gravitational field.

> The closer together the field lines, the stronger the field (so the greater the acceleration due to gravity).
there are no Dumb Questions

Q:Why is this called a gravitational field? Surely gravitational acceleration or gravitational force is a better?

A: The 'field' is a way of visualizing what's going on with the strength of the acceleration due to gravity. Gravitational field strength has units $\mathrm{m} / \mathrm{s}^{2}$, the same as acceleration. Close to the Earth, the gravitational field strength is $9.8 \mathrm{~m} / \mathrm{s}^{2}$, but further away it's lower.

Q:- If l'm drawing gravitational field lines on a picture, is there a standard number of lines that I should draw? Should I always draw 32 lines, like in these pictures?

A:: There's no strict rule - you should draw as many field lines as help you visualize what's happening. Probably at least eight is a good rule of thumb.

Q:So what's the connection between gravitational field and gravitational force?
A: : The gravitational field represents the acceleration due to gravity that an object would experience if it was placed at that point. You can get from there to the gravitational force using $\boldsymbol{F}_{\text {net }}=m a$

Q:And the gravitational force is just the same as an object's weight, right?

A:: Absolutely! Though you now know that the force - and therefore the weight - will vary depending on the distance from Earth.
Q: So - what's the equation for that?
A Funny you should ask ...

Sharpen your pencil

You want to work out an equation for the gravitational force that a spaceship experiences at any distance from the Earth
a. What happens to the surface area of a sphere if you double its radius?
c. The gravitational field gets 'spread out' over the surface area of a sphere as you get further away, in the same way as light does. What do you think will happen to the gravitational field strength if you double the distance between you and the Earth (ie. double the radius)?
b. The gravitational force depends on the distance something is from the Earth. If you're further away, will the gravitational force be larger or smaller?
d. What do you think would happen to the gravitational force if you double your mass?

Hint: $F=$ ma.
e. What do you think would happen to the gravitational force if you doubled the mass of the Earth?
f. Here are four equations. In each equation, G is a constant (and a conversion factor) that will make the numbers and units work out later on. For each equation, write down whether what happens to the size of the gravitational force, $F_{G^{\prime}}$ when you change r (the distance of the object from the Earth), m_{1} (the mass of the Earth) or m_{2} (the mass of the object) is what you'd expect in real life. Circle the equation you think is correct.

Sharpen your pencil

You want to work out an equation for the gravitational force that a spaceship experiences at any distance from the Earth
a. What happens to the surface area of a sphere if you double its radius?

Look back
at the
No Dumb
Questions
on page 718 for an explanation.

If you double the radius, you quadruple the surface area, as $S=4 \pi r^{2}$ and $2^{2}=4$.
c. The gravitational field gets 'spread out' over the surface area of a sphere as you get further away, in the same way as light does. What do you think will happen to the gravitational field strength if you double the distance between you and the Earth (ie. double the radius)?

If you double the radius, you quadruple the surface area that the field will be spread out over. So I think that the field strength would decrease by a factor of four.
b. The gravitational force depends on the distance something is from the Earth. If you're further away, will the gravitational force be larger or smaller?
If you're further away, the gravitational force will be smaller.
d. What do you think would happen to the gravitational force if you double your mass?
If you double your mass, you double the force, as $F=m a$
e. What do you think would happen to the gravitational) force if you doubled the mass of the Earth?
If you double the mass of the Earth, you double its gravitational attraction to you ($F=m a$). As gravitational forces exist in Newton's 3rd Law pairs, the force that the Earth exerts on you must also double.
f. Here are four equations. In each equation, G is a constant (and a conversion factor) that will make the numbers and units work out later on. For each equation, write down whether what happens to the size of the gravitational force, $F_{G^{\prime}}$, when you change r (the distance of the object from the Earth), m_{1} (the mass of the Earth) or m_{2} (the mass of the object) is what you'd expect in real life. Circle the equation you think is correct.

$$
F_{G}=-G m_{1} m_{2} r^{2}
$$

Wrong - if you increase r, then size of F_{G} gets larger.

$$
\mathrm{F}_{\mathrm{o}}=-\frac{6 \mathrm{~m} m_{2}}{\mathrm{e}}
$$

Wrong - if you double r, then the size of F only halves.

$\mathbf{F}_{\mathbf{G}}=-\frac{\mathbf{G} \mathbf{m}_{\mathbf{1}} \mathbf{r}}{\left(\mathbf{m}_{\mathbf{2}}\right)}$

Wrong - if you increase m_{2}, then size of F_{G} gets smaller.

Right - Doubling m_{1} or m_{2} doubles size of F_{G} Doubling r quarters F_{G}

Gravitation is an inverse square law

The gravitational force between two objects depends on $\frac{1}{r^{2}}$. If you double the distance, you decrease the force by a factor of 4 . Something that behaves like this is said to follow an inverse square law.

This is because an inverse is 1 divided by something - in this case $\frac{1}{r^{2}}$ - and the square part comes from the fact that the thing doing the dividing is squared.

The length of

 r_{2} is double the length of r. So the gravitational field strength is 4 times smaller at r_{2} than it is at r_{i}.

The length of r_{3} is four times the length of r_{i}. So the gravitational
field strength is 16 times smaller at r_{2} than it is at r_{1}, because $4^{2}=16$
there are no

Dumb Questions

Q:- But the surface of the Earth is the zero point for distance, right? Doesn't that equation go all weird with a zero on the bottom when you're at the surface?

A:- r is the distance from the CENTER of the Earth, not the distance from the surface of the Earth. When you're at the surface of the Earth, r is just the radius of the Earth. And when you're further away, r is your distance from the center.
Q: Doesn't the force depend on $\frac{1}{4 \pi r^{2}}$ rather than $\frac{1}{r^{2}}$, as the surface area is $4 \pi r^{2}$?
A : The 4π is a constant. Whatever you do to r (double it, half it, etc), the 4π doesn't change. So it's not right to say that the gravitational force 'depends' on the 4π.
Q:
What are the units of G ?
A: You can work that out ...

Sharpen your pencil

You've realized that equation below does all the right things when you change the masses and the radius.

Work out what SI units G must have to make both sides of the equation have the same units.

Hint: Don't use Newtons for force. Work out more fundamental units for force (based on kg, m and s) using $F=m a$

Download at WoweBook.Com

If you're working in SI units, F_{G} will be in Newtons, m_{1} and m_{2} in kg and r in meters. The first job G does is to give both sides of the equation the same units - as you've just worked out.

The second job that G does is to make the numbers correct. If you just multiply m_{1} and m_{2} together then divide by r^{2}, the numerical answer you get won't be equal to the force in Newtons.
G is kinda like a conversion factor - a constant that makes the numbers correct as well. For this reason, G is called the gravitational constant.

G is the gravitational constant. It makes both the units and the numbers work out.

Jim: Um, not quite. We don't know what G is in the equation. Well I mean, we know its units, but we don't know its size. If only we had a way of working that out. Joe: Well, we've got one equation, and G is an unknown. As long as G is the only unknown, we can use the equation to calculate the value of G.
Frank: I guess we already know that acceleration due to gravity at the Earth's surface is $9.8 \mathrm{~m} / \mathrm{s}^{2}$. That's gotta give us a few things we can use in that equation.
Joe: And I just found the radius and mass of the Earth in a textbook. So we know those two things as well. I think that should be enough to work out the value of G... -

Sharpen your pencil

a. By considering the acceleration due to gravity at the Earth's surface, use the equation and the ready-bake facts to work out the value of G, the gravitational constant.

The minus sign is just a convention to show that F and r are in opposite directions. If you're working with the $S^{\prime} \mid Z E$ of F_{G}
you can leave the minus sign out of your calculations. you can leave the minus sign out of your calculations.
b. Use the value for G you worked out in part a to calculate the acceleration due to the Earth's gravity that a spaceship experiences at Pluto's orbit, which is $6 \times 10^{12} \mathrm{~m}(1 \mathrm{sd})$ from Earth.

Sharpen your pencil Solution

a. By considering the acceleration due to gravity at the Earth's surface, use the equation and the ready-bake facts to work out the value of G, the gravitational constant.
Make m_{1} the mass of an object and m_{2} the mass of the Earth. a $=9.8 \mathrm{~m} / \mathrm{s}^{2}$ at Earth's surface.

$$
\begin{aligned}
F=m_{1}, a & \left.=\frac{G m_{1} / m_{2}}{r^{2}} \quad r=6.38 \times 10^{6}\right)_{0}^{m} \\
a & =\frac{G_{m_{2}}}{r^{2}} \quad m_{1}=5.97 \times 10^{24} \mathrm{~kg} m_{2}=? \\
\Rightarrow G & =\frac{a r^{2}}{m_{2}} \\
G & =\frac{9.8 \times\left(6.38 \times 10^{6}\right)^{2}}{5.97 \times 10^{24}}=\underline{=6.68 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}}
\end{aligned}
$$

Ready Bake Facts

$5.97 \times 10^{24} \mathbf{~ k g}$

Radius of the Earth:

$6.38 \times 10^{6} \mathrm{~m}$

Gravitational force between

 two masses:The minus sign shows that F and r are in opposite directions. Here, we've used the equation without the minus sign to calculate the SIZE of F_{G}
b. Use the value for G you worked out in part a to calculate the acceleration due to the Earth's gravity that a spaceship experiences at Pluto's orbit, which is $6 \times 10^{12} \mathrm{~m}(1 \mathrm{sd})$ from Earth.

$$
F=\not y_{1} a=\frac{60 m_{m}}{r^{2}} \Rightarrow a=\frac{6 m_{2}}{r^{2}}=\frac{6.68 \times 10^{-11} \times 5.97 \times 10^{24}}{\left(6 \times 10^{12}\right)^{2}}=1 \times 10^{-11} \mathrm{~m} / \mathrm{s}^{2}(1 \mathrm{sd})
$$

 there are no

G is a constant that you can look up when you need it.

G is a fundamental physical constant.
It's not a number you have to remember
or calculate every time, and we've included its value in the appendix, so you can look it up if you need it.
If you're taking an exam, the value of G will be given in your table of information - so you can just look it up there and use the value in your equation.

Dumb Questions

Q:- How did people work out the mass of the Earth in the first place?
A: : Historically, the mass of the Earth was worked out from G. G was originally worked out from experiments that measured the gravitational attraction between large masses, like cannonballs.
Q: You mean that it's not just the Earth that attracts things gravitationally?
A : - Precisely! Everything that's made of stuff attracts everything else gravitationally. It's just that the effect isn't very large unless one of the objects you're dealing with has a very large mass (like the Earth), so you don't usually notice.

Sharpen your pencil

The minus sign shows that F_{G} and r are in opposite directions. Here, we've used the equation without the minus sign to calculate the SIZE of F_{G}, and therefore the size of a

Gravitation is an inverse square law. This means that if you double the distance that an object is from the Earth, it will only experience a quarter of the gravitational force that it did in its previous position.
But what does an inverse square law look like? A graph will help you visualize it.
w look like? A graph will help you visualize it. $F=N / a=\frac{G m / m_{E}}{r^{2}}$

Distance from Earth (m)	$a=\frac{G m_{E} \leftarrow m_{E} \text { is the mass of the Earth. }}{r^{2}}$
6.4×10^{6}	
1.28×10^{7}	
1.92×10^{7}	
2.56×10^{7}	
5.12×10^{7}	

a. Fill in the values of the gravitational field strength at a variety of distances from Earth. G, the gravitational constant, is $6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} . \mathrm{s}^{2}$. $\mathrm{m}_{\mathrm{E}^{\prime}}$ the mass of the Earth, is $5.97 \times 10^{24} \mathrm{~kg}$. The radius of the Earth is $6.4 \times 10^{6} \mathrm{~m}$ (rounded to 2 sd) to make the figures easier.
Hint: look at how the values \rightarrow in the table increase...
b. Draw a graph with the distance from the Earth on the horizontal axis and the gravitational force on the vertical axis.
色

You need to You can either calculate each of these remember to values individually, or use the inverse square

Sharren your pencil Solution

 square r relationship (double the distance, quarter the \qquad force) once you've calculated the first value.Gravitation is an inverse square law. This means that if you double the distance that an object is from the Earth, it will only experience a quarter of the gravitational force that it did in its previous position. But what does an inverse square law look like? A graph will help you visualize it.
a. Fill in the values of the gravitational field strength at a variety of distances from Earth. G, the gravitational constant, is $6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} . \mathrm{s}^{2}$. $\mathrm{m}_{\mathrm{E}^{\prime}}$, the mass of the Earth, is $5.97 \times 10^{24} \mathrm{~kg}$. The radius of the Earth is $6.4 \times 10^{6} \mathrm{~m}$ (rounded to 2 sd) to make the figures easier.
Hint: look at how the values \longrightarrow in the table increase...
b. Draw a graph with the distance from the Earth on the horizontal axis and the gravitational force on the vertical axis.

Distance from Earth (m)	$a=\frac{G m_{E}}{\kappa^{2}} r_{m_{E}}$ is the mass of the Earth.
6.40×10^{6}	$9.72 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{sd})$
1.28×10^{7}	$2.43 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{sd})$
1.92×10^{7}	$1.08 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{sd})$
2.56×10^{7}	$0.608 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{sd})$
5.12×10^{7}	$0.152 \mathrm{~m} / \mathrm{s}^{2}(3 \mathrm{sd})$

Now you can calculate the force on the spaceship at any distance from the Earth

An astronaut is going from the Earth to the outer reaches of the solar system. We're trying to calculate his escape velocity - the speed he needs to be going at so as to not fall back down to Earth again.

You've realized that the Earth's gravitational field must get smaller as you move further away from the Earth. This means that the acceleration of an astronaut's spaceship due to the gravitational field isn't constant - and, therefore, the force that the spaceship experiences isn't constant either.

You've worked out that the gravitational field strength follows an inverse square relationship. If you double the displacement, you quarter the strength of the gravitational field - and also quarter the gravitational force that the spaceship experiences.

As the force (and acceleration) aren't constant, you can't use equations of motion to calculate the escape velocity.

You have a problem where the force acting on the spaceship isn't constant - so its acceleration isn't constant and you can't use equations of motion.

Can you think of a different method you can use to calculate the escape velocity?

Jim: Not so fast. We need to calculate the velocity that the astronaut needs to be going at to escape from the Earth.

Joe: Yeah, it's a problem. All the equations of motion we know about are for an object with constant acceleration. But the acceleration due to gravity isn't constant

Frank: Haven't we dealt with a non-constant acceleration before? When we worked out a bobsled's velocity at the bottom of a bumpy hill.

Joe: Yep - the component of the gravitational force accelerating the bobsled changed when the steepness of the hill changed. So the force wasn't constant, and since $\mathbf{F}_{\text {net }}=m \mathbf{a}$, the acceleration wasn't constant. How did we fix that again?

Frank: Didn't we use energy conservation?

Joe: Yeah, we said that the bobsled's potential energy at the top of the slope was transferred to kinetic energy at the bottom of the slope - whatever the shape of the slope in between.
Frank: It was just the difference in height that was important.
Jim: Can we do the same for the spaceship? Can we pretend that it starts out very far away with lots of potential energy, then "falls" back down to Earth? It'd be symmetrical, right? The velocity you need to escape from the Earth would be the same as the velocity you end up with when you fall to Earth.

Joe: The change in potential energy is the same size as the change in kinetic energy, so we can use $K=1 / 2 m \mathbf{v}^{2}$ to calculate the velocity!

Frank: Cool. So we just say $U_{\mathrm{g}}=m \mathbf{g h}$ to calculate the change in potential energy, and we're nearly done!

Jim: Um ... I'm not so sure. The ' \mathbf{g} ' in that equation is the acceleration due to gravity, isn't it? But that isn't constant here!

Joe: Hmm . The equation $U_{\mathrm{g}}=m \mathbf{g h}$ originally comes from work $=$ force \times displacement, doesn't it. And it works over displacements on a scale of a few hundred meters. So can we break down the force-displacement graph into little portions of a few hundred meters each, calculate the work done for each portion, then add them together to get the total work done?

Frank: Or can we try to look up a book to get an equation for the gravitational potential energy when you're far away?

The potential energy is the area under the force-displacement graph

You give an object potential energy, U, by doing work on the object against the force of gravity. As Work $=\mathbf{F} \Delta \mathbf{x}$, close to the Earth you can say $U=m \mathbf{g h}$, where $m \mathbf{g}$ is the gravitational force and \mathbf{h} is the object's change in height.

A visual way of showing this is to say that the potential energy is equal to the area under the force-displacement graph.

But if you're going a long way from the Earth, the force changes as the displacement changes. This means that it's not so easy to calculate the area under the force-displacement graph - and, therefore, not so easy to calculate the change in potential energy.

If the force is a gravitational force, then work done $=$ change in gravitational potential energy.

To save you having to calculate the area under the curved graph (difficult!) we've provided a ready-bake equation for the gravitational potential energy.

Sharpen your pencil

a. According to the ready bake equation, what is the value of U when r is very, very large (i.e., infinite)?
b. According to the ready bake equation, what is the value of U at the Earth's surface for a 10.0 kg mass? (The radius of the Earth is $6.38 \times 10^{6} \mathrm{~m}$ and its mass is $5.97 \times 10^{24} \mathrm{~kg}$. G is $6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} . \mathrm{s}^{2}$)
c. Comment on your answers.
a. According to the ready bake equation, what is the value of U when r is very, very large (i.e., infinite)?
When r is very very large, $U=0 J$, as you are dividing by a very very large number and r dominates.
b. According to the ready bake equation, what is the value of U at the Earth's surface for a 10.0 kg mass? (The radius of the Earth is $6.38 \times 10^{6} \mathrm{~m}$ and its mass is $5.97 \times 10^{24} \mathrm{~kg} . \mathrm{G}$ is $6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} . \mathrm{s}^{2}$)
At Earth's surface, r is radius of Earth:

$$
\begin{aligned}
u=-\frac{G_{m_{1} m_{2}}}{r} & =-\frac{6.67 \times 10^{-11} \times 10.0 \times 5.97 \times 10^{24}}{6.38 \times 10^{6}} \\
u & =-6.24 \times 10^{8} \mathrm{~J}(3 \mathrm{sd})
\end{aligned}
$$

c. Comment on your answers.

Weird! Last time, $U=0$ at the surface, not at infinity. And what's with the negative number at the Earth's surface?!

Didn't we say before that $U=0$ at the
Earth's surface - and what's with the negative numbers? The equation must be wrong!

You can only measure changes in energy.

If you know the change in potential energy
between the surface of the Earth and the edge of the solar system, you can say that an identical amount of kinetic energy must be transferred to get there - then use this to work out the escape velocity, as $K=1 / 2 m \mathbf{v}^{2}$.

As it's the change in potential energy that's important, it doesn't matter what the absolute values you calculate are - as long as the change is the same.

It's like putting an object part-way along a ruler. If one end of the object is at the mark that says 2.0 cm and the other end is at the 4.0 cm mark, you can see that the object is 2.0 cm long. Same goes if your object is between the 28.0 cm and 30.0 cm marks. The object is still 2.0 cm , long, and where you choose to count from on your scale doesn't affect this.

It's the CHANGE in gravitational potential energy that allows you to do calculations, not the absolute values.

ΔU will have the same SIZE whichever direction you make the trip in, but in one direction the change will be positive (as you lose kinetic energy) and in the other direction the change will be negative (as you gain kinetic energy).

If $U=0$ at infinity, the equation works for any star or planet

Saying that $U=0$ at the Earth's surface is great if you're close to the Earth's surface, when you can take $\mathbf{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$ to be a constant. In that context, you'd almost always define zero potential energy to be at ground level, as this is a common reference point for everything.
But if you're moving away from the Sun or another planet, the Earth's surface isn't a good reference point!

It's a bit like temperature. On Earth, it's convenient to have a scale defined by the freezing and boiling points of water on Earth, $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$. But that's not a very universal scale, as the reference point
depends on you being on Earth.

Your have your maximum possible potential energy when you're at infinity.

For temperature, scientists use the Kelvin scale, where "absolute zero" is defined as the lowest temperature theoretically possible. No one has ever reached absolute zero - just like no one has ever reached infinity - but defining an unchanging common reference point like this gives you a benchmark you can measure everything else against.

So rather than having a different reference point for every one of the (estimated) 10^{22} stars and planets in the universe, it's better to use a common reference point that is the same for any star or planet, regardless of its mass and the distance an object is from it.
That common reference point is the place where you have maximum gravitational potential energy. This has to be when you have the maximum possible displacement from the Earth - and the Sun - and all the other stars. We call this reference point "being at infinity".

$\boldsymbol{U}=\boldsymbol{0}$ at infinity.

 Total energy is conserved, so as you gain kinetic energy by falling, your potential energy becomes negative.
The values you calculate for the potential energy will be negative.

The further away you are from the surface of a planet, the greater your potential energy. Defining $U=0$ at infinity - the furthest you can possibly be - means that as you gain kinetic energy by falling towards a star or planet, your gravitational potential energy becomes negative. But that's OK - the scale hasn't changed. The change in potential energy between two points is still the same. Where you choose to count from on your scale doesn't matter. You just have to be careful with minus signs!

Potential Energy Exposed

> This week's interview: Potential energy answers charges of inconsistency.

Head First: So, potential energy, you've been accused of inconsistency. What's the bottom line?
Potential energy: The bottom line (or zero potential energy) is wherever you want it to be.
Head First: Um... are you implying that even you don't know when you're equal to zero?!
Potential energy: Yes ...
Head First: And if you don't know, how on Earth am I - or anyone else - supposed to know?

Potential energy: I think you've got the wrong end of the stick there. You can only measure changes in potential energy, not absolute values And that means you get to choose where zero potential energy is.
Head First: But why's that useful?
Potential energy: It gives you a reference point to measure changes in potential energy against.
Head First: Right. But why suddenly put that reference point at infinity? I was perfectly happy before, when zero was at the surface of the Earth.
Potential energy: You have to think about the bigger picture. When you're close to the Earth's surface, you can use the simple form of the equation $U_{\mathrm{g}}=m \mathbf{g h}$, because the acceleration due to gravity - and therefore the gravitational force - is constant.

Head First: But why can't you do the same further away from the Earth?

Potential energy: The gravitational force drops off in an inverse square way. So it's not constant - and you need to do more complicated math to calculate the change in potential energy.
Head First: I can see that - but it still doesn't tell me why you suddenly want to put zero at infinity instead of the Earth's surface!

Potential energy: What if you're launching your spaceship from the moon, or from Mars, not Earth?
Head First: Um, I guess I put the zero of potential energy at the surface of the Moon, or Mars ...
Potential energy: But that's very inconsistent, isn't it? How are you supposed to compare all these values when you keep on changing where your zero is?
Head First: Hmmm. You may have a point. But I'm finding the concept of negative potential energy difficult. I didn't think energy was a vector.

Potential energy: I'm not a vector - just like temperature isn't a vector. A temperature of $-2^{\circ} \mathrm{C}$ doesn't point in the opposite direction from a temperature of $2^{\circ} \mathrm{C}$. The negative sign is just to indicate its position on a scale, not a direction.
Head First: What does that mean in practice?
Potential energy: OK, try thinking about it like this. Suppose you start at infinity with zero total energy, then fall towards the Earth (or another star or planet) What happens to your kinetic energy?
Head First: I guess your velocity increases so your kinetic energy increases.
Potential energy: Right! But the total energy needs to stay the same. So if you start off with zero potential energy and gain, say 100 J of kinetic energy, your new potential energy must be -100 J .
Head First: OK ... but all these messy negative numbers make the math tricker, right?!

Potential energy: I do admit, that's the down side of putting zero at infinity. But as long as you're careful you'll be OK. You're dealing with changes in potential energy - so going further away from a planet is still a positive change - like going from a temperature of $-40^{\circ} \mathrm{C}$ to $-2^{\circ} \mathrm{C}$ is a change of $38^{\circ} \mathrm{C}$.

Head First: Thank you - that's much clearer now.

Use energy conservation to calculate the astronaut's escape velocity

If the gravitational force on the astronaut's spaceship was constant and didn't drop off with distance, you could just use forces and equations of motion to work out his escape velocity.

But the gravitational force on the spaceship changes as he gets further away, so it's difficult to do the calculation using forces. But you can use energy conservation, as the spaceship's kinetic energy at the start must have been transferred to potential energy by the end.
 problems you can't easily do using forces.

It doesn't matter which mass is represented by m_{1} and which is m_{2} as long as you're consistent.

After a spaceship blasts off from the Earth's surface, its propulsion system is switched off.

What is the minimum velocity that the spaceship must have to successfully escape from the Earth's gravitational field so that it can reach infinity without falling back down again? \qquad

Reapy Bake Equation

The radius of the Earth is $6.38 \times 10^{6} \mathrm{~m}$, and its mass is $5.97 \times 10^{24} \mathrm{~kg}$. G, the gravitational constant, is $6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$

- If you can escape to infinity, you can definitely make it to Pluto!

Sharpen your pencil Solution

After a spaceship blasts off from the Earth's surface, its propulsion system is switched off.

What is the minimum velocity that the spaceship must have to successfully escape from the Earth's gravitational field so that it can reach infinity without falling back down again?

The radius of the Earth is $6.38 \times 10^{6} \mathrm{~m}$, and its mass is $5.97 \times 10^{24} \mathrm{~kg}$. G, the gravitational constant, is $6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{s}^{2}$

$$
\begin{array}{ccc}
0 & 0 & m_{1}=\text { spaceship mass } \\
\text { Earth's surface } & \text { Infinity } & m_{2}=\text { Earth mass } \\
v_{0}=? & v=0 &
\end{array}
$$

Kinetic at Earth's surface transferred to potential at infinity.

$$
\begin{aligned}
& \Delta u=u_{\text {infinity }}-u_{\text {earth }} \\
& \Delta u=0-u_{\text {earth }}
\end{aligned}
$$

Zero minus a negative number is a positive number, so $\Delta U=\frac{G_{m_{1} m_{2}}}{r}$

$$
\begin{aligned}
\Delta K & =\Delta U \\
1 / 2 w_{1} v_{0}^{2} & =\frac{G \eta / m_{2}}{r} \quad \begin{array}{l}
\text { As the mass of the spaceship divides out } \\
\text { the escape velocity doesn't depend on } \\
\text { the mass. }
\end{array} \\
\Rightarrow v_{0} & =\sqrt{\frac{2 G m_{2}}{r}}=\sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{6.38 \times 10^{6}}} \\
v_{0} & =1.12 \times 10^{4} \mathrm{~m} / \mathrm{s}=11.2 \mathrm{~km} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

The escape velocity that ensures you won't fall back down to Earth again after you switch the engine off is $11.2 \mathrm{~km} / \mathrm{s}$. Pretty fast - but in space there's no kind of atmosphere, and no friction to slow you down!

But the astronaut's not totally happy with this. He thinks that you also need to escape from the Sun's gravitational field! The Sun has around 300000 times more mass than the Earth - which will really tell over large distances! You'll have to factor in the change in potential energy due to the astronaut's distance from the Sun changing, as well as his distance from the Earth.

It's OK if you used the value for the gravitational potential energy at the Earth's surface that you calculated on page 兵! but dividing out the mass of the spaceship is usually easier for these types of questions.

Sharpen your pencil

Some time after a spaceship blasts off from the Earth's surface, its propulsion system is switched off.
What is the minimum velocity that the spaceship must have to successfully escape from both the the Earth's gravitational field and the Sun's gravitational field so that it can reach infinity without falling back down again?
The radius of the Earth is $6.38 \times 10^{6} \mathrm{~m}$, and the mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$. The distance from the Earth to the Sun is $1.50 \times 10^{11} \mathrm{~m}$. The radius of the Sun is $6.96 \times 10^{8} \mathrm{~m}$, and the mass of the Sun is $1.99 \times 10^{30} \mathrm{~kg}$. G, the gravitational constant, is $6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} . \mathrm{s}^{2}$

Hint: Start with two sketches, one for the change in potential energy due to the Earth's gravitational field, and the other for the change in potential energy due to the Sun's gravitational field.

Be VERY careful with your variable names, as you will have various masses, radii and displacements floating around.

Hint: The total change in potential energy is equal to the changes due to the Earth's gravitational field and the Sun's gravitational field added together. Then you can use the same method as on the opposite page.

Sharpen your pencil
 Solution

Some time after a spaceship blasts off from the Earth's surface, its propulsion system is switched off.
What is the minimum velocity that the spaceship must have to successfully escape from both the the Earth's gravitational field and the Sun's gravitational field so that it can reach infinity without falling back down again?

The radius of the Earth is $6.38 \times 10^{6} \mathrm{~m}$, and the mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$. The distance from the Earth to the Sun is $1.50 \times 10^{11} \mathrm{~m}$. The radius of the Sun is $6.96 \times 10^{8} \mathrm{~m}$, and the mass of the Sun is $1.99 \times 10^{30} \mathrm{~kg}$. G, the gravitational constant, is $6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} . \mathrm{s}^{2}$

©
$\begin{array}{ll}\text { Earth's surface } & \text { Infinity } \\ u=-\frac{G m_{1} m_{E}}{r_{E}} & u=0\end{array}$

Change in potential energy due to Sun's gravitational field $m_{1}=$ spaceship mass $\quad r_{\text {frons }}=\begin{aligned} & \text { Distance } \\ & \\ & \text { from Sun }\end{aligned}$ $m_{s}=$ Sun mass
(-)
Earth's surface
$u=-\frac{G_{m / m}}{r_{\text {from }}}$
Kinetic at Earth's surface transferred to potential at infinity.

$$
\begin{aligned}
& \Delta u=u_{\text {infinity }}-u_{\text {earth }} \\
& \Delta u=0-u_{\text {earth }}
\end{aligned}
$$

Zero minus a negative number is a positive number, so $\Delta U=\frac{G_{m_{1} m_{E}}}{r_{E}}+\frac{G_{m_{1} m_{S}}}{r_{\text {from }}}$

$$
\begin{aligned}
& \Delta K=\Delta U \quad \text { The mass of the } \\
& 1 / 2 \operatorname{lov}_{1} v_{0}^{2}=\frac{G \eta_{1} m_{E}}{r_{E}}+\frac{G \eta h_{1} m_{S}}{r_{\text {r }}} \quad \begin{array}{l}
\text { spaceship divides out. }
\end{array} \\
& \Rightarrow \quad v_{0}=\sqrt{\frac{2 G_{m_{E}}}{r_{E}}+\frac{2 G m_{S}}{r_{\text {proms }}}} \\
& v_{0}=\sqrt{\frac{2 \times 6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{6.38 \times 10^{6}}+\frac{2 \times 6.67 \times 10^{-11} \times 1.99 \times 10^{30}}{1.50 \times 10^{11}}} \\
& v_{0}=\sqrt{1.44 \times 10^{8}+1.77 \times 10^{9}}=4.37 \times 10^{4} \mathrm{~m} / \mathrm{s}=44.7 \mathrm{~km} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

We need to keep up with our astronaut

Before sending our astronaut off to Pluto, we need to get some communication satellites in place to keep in contact with him. These satellites need to be in a certain type of orbit around the Earth called a geostationary orbit.

A geostationary orbit is one where the satellite always stays over the same point on the Earth's surface.

We need the period of the satellite to be $\mathbf{2 4}$ hours since that's the time it takes for the Earth to rotate once.

Jim: Um ... I think the moon takes longer to go around the Earth than that. Don't you get a full moon only once a month?

Frank: But the moon goes round once per 24 hours, right? It's not there during the day, is it?

Joe: If that's your argument, then the sun goes round once every 24 hours, too! And we know that's not right - it takes a whole year for the Earth to go round the sun.
Frank: Hmmm, good point.
Jim: The reason the moon and the sun appear to move across the sky is because the Earth's rotating around on its axis once a day. That's where day and night come from.

Frank: Oh, right. That's why we're supposed to make the communication satellite have a period of 24 hours, isn't it? So it can match rotation with the Earth and always be above the same point?
Joe: But we don't know how to calculate the period of the orbit. Actually, we don't know how to calculate anything for orbits!
Jim: Hmm. I'm sure that Pluto must take longer to orbit the sun than the Earth does. Maybe the period of the orbit depends on your displacement from the thing you're orbiting.
Frank: I'm not so sure. Remember when we were working with the hamster wheel? Didn't every part of the wheel rotate with the same angular velocity? That means every part had the same period, too, right? So the distance from the center of the wheel didn't affect the period of the wheel.

Joe: But all the parts of the hamster wheel were joined together, so they have to go around with the same period. Planets and satellites aren't joined together. So the period might depend on the distance from the center after all.

Frank: Hmm, that's a good point, too.
Jim: I'm sure that far away objects must take longer to orbit.
Joe: But how can we work that out?

The centripetal force is provided by gravity

An object that travels along a circular path must have a net
force acting on it to provide a centripetal force. This force must act towards the center of the circle.

In chapter 15 , you learned to equate the size of the centripetal force, $F_{\mathrm{c}}=m r \omega^{2}$ with the net force. Here, the net force on the satellite is provided by the gravitational force from the Earth.

There will be only one radius where the satellite has a period of 24 h and a geostationary orbit.

Equate the
 CENTRIPETAL FORCE with the GRAVITATIONAL FORCE to solve orbit problems.

 If you make sure both are pointing towards the center of the circle, then they'll both have the same sign.You can look up equations
involving T in the appendix. \downarrow
a. Work out a general equation for the size of r, the radius of a satellite's orbit in terms of T, the period of the satellite, G the gravitational constant and m_{e} the mass of the Earth (don't insert any values, just work out an equation).
b. Calculate the height that the satellite must be above the Earth's surface to have a period of 24 hours.
c. If the radius of a satellite's orbit is doubled, what happens to the period of its orbit? (Please do this question using proportion.)
d. What happens to a satellite's kinetic and potential energy as it goes round a circular orbit?

Sharpen your pencil
 Solution

a. Work out a general equation for the size of r, the radius of a satellite's orbit in terms of T, the period of the satellite, G the gravitational constant and m_{e} the mass of the Earth (don't insert any values, just work out an equation).
Gravitational force provides centripetal force for orbit.

$$
\begin{aligned}
F_{c} & =F_{n t} \\
m_{m} r \omega^{2} & =\frac{G_{m e n}^{m}}{r^{2}}
\end{aligned} \quad \begin{aligned}
& \text { Both forces points towards the } \\
& \text { Center of the circle, so you can } \\
& \text { lose the 'Conventional' minus sign. }
\end{aligned}
$$

m for the

$$
\omega^{2}=\frac{G_{m_{c}}}{r^{3}} \quad \text { Make a substitution for } \omega . \quad \omega=2 \pi f \quad \text { and } \quad f=\frac{1}{T}
$$

$$
\left(\frac{2 \pi}{T}\right)^{2}=\frac{G m_{e}}{r^{3}}
$$

$$
\frac{4 \pi^{2}}{T^{2}}=\frac{G_{m_{e}}}{r^{3}}
$$

This is called Kepler's 3rd
Law. It shows you how the radius and period of an orbit are related.

$$
r^{3}=\frac{G_{m} T^{2}}{4 \pi^{2}}
$$

$$
\Rightarrow \omega=\frac{2 \pi}{T}
$$

The radius in the gravitational force equation is always the distance from the center of the Earth, not the surface. So you need to calculate the difference at the end.
b. Calculate the height that the satellite must be above the Earth's surface to have a period of 24 hours.

$$
r=\sqrt[3]{\frac{G m_{e} T^{2}}{4 \pi^{2}}}=\sqrt[3]{\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24} \times 86400^{2}}{4 \times \pi^{2}} 24 \text { hours is } 24 \times 60 \times 60=86400 \mathrm{~s}}=4.22 \times 10^{7} \mathrm{~m}(3 \mathrm{sd})
$$

$$
\text { Distance from surface }=r-r_{e}=4.22 \times 10^{7}-6.38 \times 10^{6}=3.59 \times 10^{7} \mathrm{~m}(3 \mathrm{sd})
$$

c. If the radius of a satellite's orbit is doubled, what happens to the period of its orbit? (Please do this question using proportion.)

$$
\begin{aligned}
r^{3}=\frac{G_{m} T^{2}}{4 \pi^{2}} \quad \begin{array}{l}
\text { Everything in the equation is constant apart from } r \text { and } T . \\
\text { If } r \text { is doubled, left hand side of equation increases } 2 \times 2 \times 2=8 \text { times. } \\
\\
\text { This means that } T^{2} \text { is } 8 \text { times larger than before. } \\
\\
\\
\text { So } T \text { is } \sqrt{8}=2.83(3 \text { sd) times larger than before. }
\end{array} .
\end{aligned}
$$

d. What happens to a satellite's kinetic and potential energy as it goes round a circular orbit?

They remain constant because the satellite's height and speed remain constant
(even though its velocity is changing direction all the time)..

Q:What was that $\sqrt[3]{ }$ thing all about in the math bit over there?
A: It's a cube root symbol. You know how a square root is what you do to find out what number you need to square to get the number you started with?
Q: yeah...
A: Well, a cube root is what you type into your calculator to work out what number you'd need to cube to get the number you started off with.

Q:So if I have $r^{3}=$ something then I can say that $r=\sqrt[3]{ }$ something
A : Yes. It works in the same way that a square root does. Q: so ... I noticed that the mass of the satellite divided out when I made the centripetal force equal to the gravitational force. That kinda thing has happened a few times now.
A: : Yeah, good spot. That's because the gravitational force depends on the object's mass, m. The gravitational force provides the centripetal force, $\mathrm{F}_{\mathrm{c}}=m \mathbf{a}_{\mathrm{c}^{\prime}}$. So when you equate them, you get an ' m ' on each side of your equation, which divides out.

Q:: So why cant l just equate the gravitational field strength with the centripetal acceleration and skip the step of dividing out the mass?
A: You could ... but dealing with forces is a good habit to get into.

Q:Why should I deal with forces, not accelerations? A : There are a lot of other sources of centripetal force - and the size of the force may not depend on the mass of the object.

Q:When might the size of the force not depend on the mass of the object? Well, an electron will follow a curved path when it goes through a magnetic field because of its electric charge, not its mass. You don't have to worry about that right now because it's in the electromagnetism part of your course. But if you get used to equating the centripetal force with the source of the net force, you'll find dealing with that a whole lot easier when you get there.

With the comm satellites in place, it's Pluto (and beyond)

The communications satellites are in place in their geostationary orbits nearly 4000 km above the Earth's surface.

And the astronaut it good to go.
Stand by for blasting off to Pluto - and beyond!

Question Clinic: The "gravitational force = centripetal force" Question

This means don't use numbers yet.

Notice that you'll have to subtract the radius of the Earth from the radius of the orbit to get the distance above the surface!

Buzzwords to get you thinking about circular motion

Make sure you use the mass of the Earth - not the mass of the sun or anything else on your table of information!
2. A communications satellite is to be put into orbit around the Earth.
a. Work out a general equation for T, the period of a satellite in terms $<$ of r the radius of its orbit, G the gravitational constant and m_{e} the mass of the Earth.
b. Work out the height that the satellite must be above the Earth's surface to have a period of 24 hours.
c. If the radius of the satellite's orbit is doubled, what happens to the

This tells you which letters you should include. period of its orbit?

You'll need
to convert
this time to
seconds to make
all the units
work through
correctly.

The strength of a gravitational field at a point is the same as the acceleration of an object in freefall at that point. Gravitational field lines help you to visualize the gravitational field strength.

If a quantity (for example the gravitational field strength) is proportional to $\frac{1}{\mathrm{r}^{2}}$ then the quantity follows an inverse square law.

Your Physics Toolbox

You've got Chapter 18 under your belt and added some problem-solving concepts to your toolbox.

Gravitational field

The gravitational field strength

 tells you the acceleration something would experience if it was allowed to freefall at that distance from the Earth.The gravitational field strength follows an inverse square law.

Gravitational field lines

Gravitational field lines point in the direction something would move in if it was allowed to freefall from that point.

The closer together they are, the stronger the gravitational field is at that point.

Inverse square law

 If a quantity follows an inverse square law, it drops off by $\mathrm{I} / \mathrm{r}^{2}$ as you increase the distance from its source. This means that if you double the distance, there's a fourfold decrease in the quantity. Examples: light, sound, gravitational field strength.
Geostationary orbit

An orbit with a period of 24 hours. So-called because if the satellite is over the equator and rotating in the same direction as the Earth, it stays over the same spot on the ground.

Gravitational potential

Another name for gravitational potential energy. The term is most commonly used when you've defined $u=0$ to be at infinity.
The gravitational potential drops off as $1 / r$ - if you double the distance, you halve the gravitational potential.

Calculations with gravitational potential

The change in potential energy is equal to the change in kinetic energy.
Be very, very careful with minus signs! Because $U=0$ at infinity, all other values of gravitational potential will be negative. But the CHANGE in potential energy is the same wherever you define zero to be.

Calculations with orbits

The net force that provides the centripetal force for an orbit is the gravitational force.
Equate the gravitational force with the centripetal force, and the answers will drop out of your equation.

Ready Bake
Equations

$$
\begin{aligned}
& F_{G}=-\frac{G m_{1} m_{2}}{r^{2}} \\
& U_{G}=-\frac{G m_{1} m_{2}}{r}
\end{aligned}
$$

19 Oscillations (part 1)

Things can look very different when you see them from

 another angle. So far you've been looking at circular motion from above - but what does it look like from the side? In this chapter, you'll tie together your circular motion and trigonometry superpowers as you learn extended definitions of sine and cosine. Once you're done, you'll be able to deal with anything that's moving around a circle - whichever way you look at it.
Welcome to the fair!

After your success at hamster training, you've got another client who needs your help. Jane's opening up a new booth at the local fair, and wants to build a duck-shooting competition - with a twist.

At the moment, she's got a duck moving around in a circle. But she expects the game to be popular, and the rotating duck takes up space that she could use to pack in more paying customers.

So instead, Jane wants to let players shoot at a digital version of the duck, displayed on a giant flat screen. Each player feels like they're shooting at a real rotating duck, but Jane can just monitor the screen to run the game.
Jane's got all the equipment: a duck mounted on a rotating stick, a screen, and light guns that can shoot at the screen. The screen even registers where the gun hits, and which player shot the duck. Your job is the hard part, though: where should the screen display the duck as it moves around in a circle?

> This chapter builds on what we did in chapter 16 , with the hamster trainer.

Reproduce the duck on the display

The real duck sits on a pole at eye level and travels around in a circle. But your job is to figure out where on Jane's big screen the digital duck should appear. Every time Jane tries to get the screen working, things look funny.

We know the real duck's moving along the edge of a circle, which is 3.00 meters wide. We also know that the duck goes around the entire circle once every 2.50 seconds. The duck starts in the middle on the far side from the player, and travels around the circle counter-clockwise.

The player is actually The player is acts well
further away, bu a minute.
get to that in a

 iss.

Sharpen your pencil Solution

Draw a player's-eye view of the game, and describe what the player sees from their side perspective as the duck goes around in a circle.

The player is much further away than there was space to show in the picture. The player is actually standing somewhere off the left hand page!

Make sure to write down any important times and distances from the moment the game starts that might help you draw the digital duck on the screen.

The player sees the duck starting out in the center of their view. Then after 0.625 s , the duck's on their left side. After 1.25 s the duck is back in the center. After 1.875 s , the duck's on the right. Then after 2.50 s , it's back where it started in the center.
The player doesn't see a circle at all. The duck just appears to move side to side (though the player would see different sides of the duck as the duck turns around the circle).

Joe: ... er, the radius is 1.50 meters. The diameter's 3.00 meters.
Jim: Oops, sorry, you're right. The diameter's 3.00 meters. Jane's screen is wider than that, so we can show the duck at its actual size.

Joe: Cool. We just have to work out how fast the duck's going, left-right-left-right, etc. Then we can move the duck across the screen at the correct velocity.

Frank: Well, we know the duck takes 2.50 seconds to go around once.
Jim: So the duck's got a period of 2.50 s . We know the radius of the circle, too. So we can work out the duck's speed, just like we did for the hamster trainer.

Joe: You know, I'm a bit worried about the light gun. There might be some problems there. Here's what I'm thinking...

Sharpen your pencil

Joe's worried about registering hits on the screen. The distance from the player to the duck is smaller when the duck is at the front of the circle than it is when the duck is at the back of the circle. So the distance that the light from the light gun travels is different depending on the duck's position.

This might mean that a hit when the real duck's at the front of the circle may register before a hit at the back of the circle. But the screen for the digital duck is flat, so will register all hits at the same time. Do you think that's a problem we'll need to worry about?
a. A duck is on the edge of a roundabout with a diameter of 3.00 meters. The roundabout goes round once every 2.50 seconds. What is the duck's speed?
F The equations you'll need to use for this are in chapter 16 .
b. The duck is to be zapped with a light gun by a player standing 40.00 m away from the front of the roundabout. How much longer does it take the light to cover the 43.00 m to the back of the roundabout compared to the 40.00 m to the front of the roundabout? (The speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.)

Reapy Bake Fact
Speed of light:
$3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}$
c. Do you think the player will notice this extra time that it takes for a hit to register?

Solution

Joe's worried about registering hits on the screen. The distance from the player to the duck is smaller when the duck is at the front of the circle than it is when the duck is at the back of the circle. So the distance that the light from the light gun travels is different depending on the duck's position.

This might mean that a hit when the real duck's at the front of the circle may register before a hit at the back of the circle. But the screen for the digital duck is flat, so will register all hits at the same time. Do you think that's a problem we'll need to worry about?
a. A duck is on the edge of a roundabout with a diameter of 3.00 meters. The roundabout goes round once every 2.50 seconds. What is the duck's speed?

$$
\begin{aligned}
& \text { Use equation } v=r \omega \text {; work out } \omega \text { from frequency } \\
& \text { Period of circle, } T=2.50 \mathrm{~s} \\
& \text { Frequency, } \begin{aligned}
f=\frac{1}{T} & =\frac{1}{2.50}=0.400 \mathrm{~Hz} \\
v=r \omega & =r \times 2 \pi f \\
& =1.50 \times 2 \times \pi \times 0.400 \\
& =3.77 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
\end{aligned}
$$

You can also do this by using
$\angle \quad C=2 \pi r$ to calculate the
distance the duck travels
in I reolution, then dividing
the distance by the period
b. The duck is to be zapped with a light gun by a player standing 40.00 m away from the front of the roundabout. How much longer does it take the light to cover the 43.00 m to the back of the roundabout compared to the 40.00 m to the front of the roundabout? (The speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.)

Difference in distance $=43.00-40.00=3.00 \mathrm{~m}$
Time it takes light to cover this:

$$
\begin{aligned}
& \text { speed }=\frac{\text { distance }}{\text { time }} \\
& \Rightarrow \text { time }=\frac{\text { distance }}{\text { speed }}=\frac{3.00}{3.00 \times 10^{8}} \\
&=1.00 \times 10^{-8} \mathrm{~s}(3 \mathrm{sd})
\end{aligned}
$$

c. Do you think the player will notice this extra time that it takes for a hit to register?
$1 \times 10^{-8} s$ is very short - 10 nanoseconds! Players won't notice the time difference between hitting the duck at the front of the circle and hitting the duck at the back of the circle.
So we can just make the flat screen register hits instantly.

So we know the duck's speed is $3.77 \mathrm{~m} / \mathrm{s}$, and the light arrives more-or-less instantly. Great!

Jim: So the duck starts in the center, moves 1.50 m to the left at $3.77 \mathrm{~m} / \mathrm{s}$, goes 3.00 m to the right at $3.77 \mathrm{~m} / \mathrm{s}$ and back to the left at $3.77 \mathrm{~m} / \mathrm{s}$. Should be pretty straightforward.
Joe: Wait... that doesn't sound right. If the duck travels 6.00 m in total at a speed of $3.77 \mathrm{~m} / \mathrm{s}$, wouldn't it take the duck less than 2.00 s to get back to the start?

Jim: How do you mean?
Joe: Well, we know the duck moves from the center to the left, 1.50 m , then all the way to the right, another 3.00 m , and then back to the center, another 1.50 m .

Frank: Right. So that's 6.00 m total.
Joe: But let's say that the duck goes at $3.00 \mathrm{~m} / \mathrm{s}$. I chose that speed because it's easier to do mental arithmetic with it! Anyway, the trip across the circle and back- 6.00 m -would take exactly 2.00 s . But $3.77 \mathrm{~m} / \mathrm{s}$ is faster than $3.00 \mathrm{~m} / \mathrm{s}$, so the duck should take less than 2.00 s to go around once.
Jim: But the duck actually takes 2.50 s to go round once - that's more than 2.00 s , not less! Something weird's going on ...

Sharpen your pencil

Does your answer make sense? Always check your work!

The real duck that you are reproducing on the screen takes 2.50 seconds for exactly 1 revolution. That's a total distance of 6.00 m from the player's perspective. But we just calculated that the duck's speed is $3.77 \mathrm{~m} / \mathrm{s}$.
a. How can it possibly take the duck 2.50 s to do a round trip of 6.00 m from the player's perspective when the duck has a speed of $3.77 \mathrm{~m} / \mathrm{s}$?
b. Describe qualitatively the speed that the player observes the duck moving at for any 'special points' you can spot on the circle. Illustrate this with a sketch.

Solution
The real duck that you are reproducing on the screen takes 2.50 seconds for exactly 1 revolution. That's a total distance of 6.00 m from the player's perspective. But we just calculated that the duck's speed is $3.77 \mathrm{~m} / \mathrm{s}$.
a. How can it possibly take the duck 2.50 s to do a round trip of 6.00 m from the player's perspective when the duck has a speed of $3.77 \mathrm{~m} / \mathrm{s}$?
b. Describe qualitatively the speed that the player observes the duck moving at for any 'special points' you can spot on the circle. Illustrate this with a sketch.
a. The duck is going at $3.77 \mathrm{~m} / \mathrm{s}$ round the circumference of the circle, not across the circle's diameter Circumference $=2 \pi r=2 \times 3.14 \times 1.50=9.42 \mathrm{~m}$

The round trip is 9.42 m , not 6.00 m , and takes 2.50 s for a duck traveling at $3.77 \mathrm{~m} / \mathrm{s}$.
b. The player viewing the duck from a side view. When the duck's in the middle, it looks like the duck is moving faster - at $3.77 \mathrm{~m} / \mathrm{s}$. But when the duck is at the ends of the circle, most of its motion is along the player's line of sight: forward or backward. So to the player, it looks like the duck's speed is closer to $0 \mathrm{~m} / \mathrm{s}$ at those points.

The player only sees one component of the duck's position and velocity.

If you are the player, the side-on view that you have makes it look like the duck's moving left and right along a straight line. You don't notice the duck going forward and backward at all. You only sees the left-right component of the duck's displacement and velocity vectors.
So from your perspective, the velocity the duck appears to have only depends on the left-right component of its velocity vector. This means that the duck appears to move rapidly across the center of its path, but slowly at each end of the circle.

The screen for the game is TWO-DIMENSIONAL

Even though the duck is three-dimensional, a projection of that duck is only two-dimensional. Imagine you're standing next to a projector, and you can only watch the shadow of the duck cast upon a screen.

As the duck moves across the center of the circle, it's mostly moving left to right (or right to left). The duck's shadow moves quickly across the center of the screen.
As the duck turns around at each end of the circle, it's moving mostly back-to-front (or front-to-back). But the screen only shows you left-to-right movement, so the duck's shadow moves slowly at the ends.

Imagine a projector, right where the player is, facing the rotating duck.

The projector is just an analogy. The actual game would have a TV screen, not a projector.

Assume that when the light from the projector gets to the duck, the duck's shadow is projected STRAIGHT on to the display.

The duck's shadow is 2D, and moves left and right across the screen

Sharpen your pencil

Your job is to work out what the duck's displacement vector does as time goes on, so you know where to plot the duck on the screen. The circle the duck's attached to has a diameter of 3.00 m and a period of 2.50 s .

Use the pictures below, plus the fact that the angular velocity of the roundabout is constant, to sketch a graph of how the duck's left-right component (plotted on the vertical axis) varies with the angle θ (measured in radians and plotted on the horizontal axis) for one complete revolution (2π radians).

Mark the values at special points in the duck's motion on your sketch. Look for points where the duck is at an extreme in displacement - for instance, at zero, or at the maximum in either direction. Write the times that these points would occur at, too.

Use the period of 2.50 s to work this out.

Player's left

Player is way over in this direction. <1 The duck's halfway through a revolution when it reaches here

The circle is split up into 24 equal segments.

Player's right

You need to do the graph title, axis
labels, etc. yourself.

You'll probably find the note you made in chapter 16 helpful when you're thinking about this exercise.

Radians are a way of measuring angles that's especially useful for working with circles. There are 2π radians in I revolution. Think of other angles in terms of 'fractions of ' 2π.

Make the player's left the positive direction.

So we know what the duck does...

When you're playing the game, you observe only the duck going left and right, because you see only the left-right component of the duck's displacement.
Player's left.

θ is the angle, ω is the angular speed.
With linear quantities, you can write: distance $=$ speed \times time

So with angular quantities, you can write an equivalent equation for the angle, θ :

..but where exactly is the duck?

Although the shape of our graph is correct, the only exact values we know are at the extremes, when the duck is at its maximum left or right displacement, or when the duck has zero displacement.

To get the screen working, we need to know exactly where the duck is at any given time... and that means we need an equation for the duck's displacement.

Though as your graph is drawn fairly accurately, you can read off values from it. But it would be better to have an equation to give an exact value for the displacement at any time.

Any time you're dealing with a component vector, try to spot a right-angled triangle

When you play the game, you see only the component of the duck's displacement vector that's parallel to the screen. If you also draw in a perpendicular component, you can form a right-angled triangle with the parallel component, perpendicular component, and the radius.
ω is radians per second.

$$
\begin{aligned}
\text { So } \omega & =\frac{\Delta \theta}{\Delta t} \\
\Delta \theta & =\omega \Delta t
\end{aligned}
$$

$$
\theta=0 \text { at } t=0
$$

$$
\text { so } \theta=\omega t
$$

This is the "angular equivalent" of distance $=$ speed \times time.

1

The duck is always distance r away from the center of the circle. The duck rotates counterclockwise with a constant angular velocity ω.

The duck's image on the screen is the projection of the component of its displacement parallel to the screen.

Here, we're looking DOWN on the duck from above. The player is over to the left a long way away, and we're projecting what they see onto this display.

You can say what the angle θ is at any time, using the equation $\theta=\omega t$. But what you really want to know is the duck's displacement from the center at any time.

The projection of the duck's displacement from the center is always vertical (the way we've drawn it here). We'll call this displacement vector from the horizontal axis \mathbf{y}, as shown below. Its projection on the screen is the \mathbf{y} component of the radius.

In math and physics, screen is y-component a vertical distance screen is y-component of the radius. or displacement is sometimes called y, to distinguish it from x. the screen
player's left
Because of the way this is drawn, the screen
looks vertical. That's because the player's left is at the "top" and the player's right is at the "bottom" - just like the "sharpen your
 pencil" you did on page 771.

When you do a projection by drawing a right-angled triangle inside a circle like this, the triangle's HYPOTENUSE is always the RADIUS of the circle.

If we also draw in \mathbf{x}, the \mathbf{x}-component of the displacement, we can form a right-angled triangle using the \mathbf{y}-component, the \mathbf{x} component and the radius.
When you draw a right-angled triangle like this, its hypotenuse is always the radius.

Sharpen your pencil

Your job is to use the right-angled triangle you've spotted to calculate the size of the y-component of the duck's displacement at any time. This gives you the position of the duck on the screen at any time.
a. The roundabout's diameter is 3.00 m and the duck's velocity is $3.77 \mathrm{~m} / \mathrm{s}$.

What is the duck's angular velocity, ω ?

b. Assume that at $t=0 \mathrm{~s}, \theta=0$. Write down an equation for θ in terms of ω and t (where θ is measured in radians). Use this to fill in the ' t ' column of the table on the opposite page.
c. Write down an equation for the length of the y-component of the duck's displacement with respect to the angle θ, where θ is measured in radians.

Use this equation and your answer to part b. to write down an equation for the length of y with respect to t.
θ is in radians. This means your calculator should be in radians mode too.
d. Fill in the table with values for t and the y-component of the duck's displacement for the given angles, where θ is in radians.

Angle, θ (radians)	Time, t (s)	Length of duck's y-component (m)
0		
$\frac{\pi}{12}$		
$\frac{\pi}{8}$		
$\frac{\pi}{6}$		
$\frac{\pi}{4}$		
$\frac{\pi}{3}$		
$\frac{\pi}{2}$		

e. Use your table to draw a graph of the y-component of the duck's displacement vs. time.
You should give your graph a title and label its axes.

Sharpen your pencil Solution

Your job is to use the right-angled triangle you've spotted to calculate the y-component of the duck's displacement at any time. This gives you the position of the duck on the screen at any time.
a. The roundabout's diameter is 3.00 m and the duck's velocity is $3.77 \mathrm{~m} / \mathrm{s}$. What is the duck's angular velocity, ω ?
b. Assume that at $t=0 \mathrm{~s}, \theta=0$. Write down an equation for θ in terms of ω and t (where θ is measured in radians). Use this to fill in the ' t ' column of the table.
c. Write down an equation for \mathbf{y}, the y -component of the duck's displacement with respect to the angle θ, where θ is measured in radians. Use this equation and your answer to part b. to write down an equation for y with respect to t.
d. Fill in the table with values for t and the y-component of the duck's displacement for the given angles, where θ is in radians.
e. Use your table to draw a graph of the y-component of the duck's displacement vs. time.

Angle, θ (radians)	Time, t (s)	Length of duck's y-component (m)
0	0	0
$\frac{\pi}{12}$	0.104	0.388
$\frac{\pi}{8}$	0.156	0.574
$\frac{\pi}{6}$	0.208	0.750
$\frac{\pi}{4}$	0.313	1.06
$\frac{\pi}{3}$	0.417	1.30
$\frac{\pi}{2}$	0.625	1.50

a. $\quad v=r \omega$

$$
\Rightarrow \omega=\frac{v}{r}=\frac{3.77}{1.50}=2.51 \mathrm{rad} / \mathrm{s}(3 \mathrm{sd})
$$

b. ω is radians per second. So $\omega=\frac{\Delta \theta}{\Delta t}$

$$
\begin{array}{r}
\Rightarrow \Delta \theta=\omega \Delta t \\
\theta=0 \text { at } t=0 \text { so } \theta=\omega t
\end{array}
$$

c. $\sin (\theta)=\frac{0}{h}=\frac{y}{r}$
$\Rightarrow y=r \sin (\theta)$ and substitute in $\theta=\omega t$
$y=r \sin (\omega t)$

Up until now, we've thought of sine and cosine applying only to angles that are part of a right-angled triangle. Now we need to extend their definitions to cover all the angles that can be swept out inside a circle.

For angles smaller than a right-angle, we formed a right-angled triangle using \mathbf{r}, the radius of the circle \mathbf{y}, the y -component of the radius and \mathbf{x}, the \mathbf{x}-component of the radius.

Then we projected the radius vector onto a line parallel to the y-axis and used the equation $\sin (\theta)=\frac{y}{r}$ as usual to calculate y, the duck's distance from the center of the screen,

Our original definition of $\sin (\theta)$ lets us deal with only this quarter

But now we need to deal with the other angles further round the circle, which are larger than $\frac{\pi}{2}$ radians $\left(90^{\circ}\right)$. If we can't deal with these angles, we don't know where to draw the duck on the screen.

The definition of sine still comes from the ratio of the y-component to the length of the radius, and is the same equation as before:

New definition:

> $\sin (\theta)=\frac{y}{r}$

> This works for ANY angle in a circle, not just an angle that's part of a right-angled triangle.

$$
\sin (\theta)=\frac{y}{r}
$$

The definition of $\sin (\theta)$ is the

For angles larger than π (larger than 180°), the y-component of the displacement points in the other direction, so has a negative sign. This

If θ is more than half way around, then the y-component will be negative. means that $\sin (\theta)$ is also negative.
To make sure the signs work out OK, r is always treated as positive because it's pointing away from the center of the circle. This is why r is in italics - in the context of this definition it's a scalar with a (positive) size and no direction.

If the y-component is negative, $\sin (\theta)$ is also negative.
r is always taken to be positive as it's pointing away from the center of the circle.

Q:So an angle doesn't need to be in a right-angled triangle for it to have a sine?
A : :That's right. Our new extended definition of sine says that if you have a vector that starts at the origin, and you measure the angle θ that it makes with the x axis, $\sin (\theta)$ is the y-component of the vector divided by the radius.

Q:- But why is it useful to be able to calculate the sine of any angle? Isn't the sine only interesting when there's a rightangled triangle involved?
A: The sine of larger angles is crucial when you have circular motion, like in the duck-shooting game. In the game, we need to know the y-component of the duck's displacement vector. So we need to calculate the sine of the angle that the duck makes with the x-axis.

Q: So how did you decide which way around to put the axes?

A: - It was just the way it came out when we drew the aerial view of the player and the duck on the circle. We made the player's left the positive direction, and their right the negative direction. You could have done it the other way, and the effect would be the same. You'd just have positive values for the player's right, instead of their left.

Q: - I've heard people talking about a "sine wave" before, but never knew what they meant. Did I just draw a sine wave?
A: Yes, you did! And it's called a wave because the pattern repeats itself again and again if you keep on going around and around for more than one revolution.

For every large angle, you can find a new right-angled triangle.

If you have a radius vector and a \mathbf{y}-component vector, you can form a right-angled triangle using the x-axis as the third side.

One of the angles in this new right-angled triangle will have a sine of $\frac{y}{r}$, which is the same size as the sine of your angle, θ.

Then you can work out the value of the angle in the right-angled triangle. Look out for the angle in the right-angled triangle and the large angle θ adding up to a "nice" angle, like π $\left(180^{\circ}\right)$ or $2 \pi\left(360^{\circ}\right)$.

Q: In the "Sharpen your pencil" on page 771, I didn't have to calculate any sines for angles larger than a right-angle, because I just projected across from the points on the circle. How would I actually calculate values for the y-components?
A : : Your calculator is able to work out the sine of any angle you give it. Just make sure the calculator's measuring the angle the same way as you are (in degrees or radians)

The sine of this angle $=\frac{y}{r}$ which is the same SIZE as $\sin (\theta)$.

Look at the direction of the y-component to work out the SIGN of your answer.

Let's show Jane the display

We're all set to give Jane our equation, $y=r \sin (\omega t)$ and help her get her screen working. Time to start raking in the profits...

$y=r \sin (\omega t)$

...but Jane's got a new idea, and it's going to take some more work.

The second player sees the x-component of the duck's displacement
 -

The second player is facing in a different direction. They're standing $\frac{\pi}{2}$ radians $\left(90^{\circ}\right)$ further around the circle, clockwise, than the first player.

This means that the second player doesn't see the \mathbf{y}-component of the duck's displacement. Instead, the second player only sees the x-component of the duck's displacement.

The first player only saw the y-component of the duck's displacement.

Sharpen your pencil

Player 2's right this direction.

\qquad
Make Player 2's left the positive direction, like we did for Player 1 .
a. This time, you're interested in x, the length of the \mathbf{x} component of the duck's displacement. Write down an equation for x in terms of r and θ. (The duck starts at $\theta=0$).
b. Sketch a graph of how x varies with θ for one complete revolution of the circle, radius r. Be sure to mark any special points.

This is the projection that player I sees.
c. Sketch a graph that shows how y, the length of the \mathbf{y}-component of the duck's displacement varies with θ. Compare and contrast this graph with the one you drew in part b, and note any similarities and differences.

Sketch these two graphs one above the other with the same scale.

Solution
a. This time, you're interested in x, the length of the \mathbf{x} component of the duck's displacement. Write down an equation for x in terms of r and θ. (The duck starts at $\theta=0$).

Make Player 2's left the positive direction, like we did for Player I.
b. Sketch a graph of how x varies with θ for one complete revolution of the circle, radius r. Be sure to mark any special points.

c. Sketch a graph that shows how y, the length of the \boldsymbol{y}-component of the duck's displacement varies with θ. Compare and contrast this graph with the one you drew in part b , and note any similarities and differences.
The graphs are similar, except that player 2's is shifted along by $\frac{\pi}{2}$ because they are further round the circle by an angle of $\frac{\pi}{2}$.
The duck starts in the center for the first player, but at a maximum for the second player.
Sine and cosine are related because they both involve one component and the hypotenuse.

Sketch these two graphs one above the other with the same scale.

We need a wider definition of cosine, too

Just like there's a wider definition of sine, there's also a wider definition of cosine, which you've just worked out. It's very similar to the wider definition of sine, except that it involves the x-component: $\cos (\theta)=\frac{x}{r}$
The sign of $\cos (\theta)$ is the same as the sign of the x -component.

New definition:

$$
\cos (\theta)=\frac{x}{x}
$$

sine and cosine are related to each other

The second player sees the x-component of the duck's displacement, $x=r \cos (\omega t)$, as the duck moves round the circle, while the first player sees the y-component: $y=r \sin (\omega t)$.
The graphs of sine and cosine are closely related. They're exactly the same shape, in fact, except that cosine is "ahead" of sine by $\frac{\pi}{2}$. In our game, that's because the second player's vantage point is $\frac{\pi}{2}$ ahead of the first player's.
A cosine graph starts with the maximum value of the variable at the origin, and a sine graph has a value of 0 at the origin.

> Cosine starts at its maximum value.

The AMPLITUDE

is the maximum deviation from the center of your sine 01 cosine graph.

Here, you know that the amplitude of the displacement-time graph is r, the radius of the circle. So you know that the extremes of the graph have to be $+r$ and $-r$.
You can also use the amplitude to work out an equation for your graph. The maximum value that sine or cosine can have is 1 . So to have a graph where the maximum value is r, you have to multiply the sine or cosine by r.
That's why your equations have the form
$\frac{\mathbf{y}}{}=\frac{r \sin (\omega t)}{\sim}$ and $\frac{\mathbf{x}}{\uparrow}=\frac{r \cos (\omega t)}{\uparrow}$.
This also means that your two graphs both have the same height - because they have the same amplitude.

Head First: So, sine, it's been a while since we first met back in chapter 9, but it's good to have you back today to discuss these latest revelations. Or should that be revolutions?!
sine: Ha, that's right. I do cover far more angles than you thought I could... but I don't see why that's such a big deal.

Head First: It's not a big deal, not really, just a bit.. unexpected! I'd never have thought that an angle larger than a right angle could even have a sine.
sine: Yeah, I kinda understand how you feel. It's like finding out that an old friend has a whole other secret life. Though my extended definition isn't really all that different from the one you had before.
Head First: Hmm... before, I thought of you as having to do with the ratio of particular sides in a right-angled triangle. But now I guess we know that angles that can't possibly be in a right-angled triangle can still have a sine.
sine: Well, I'm still the ratio of two lengths. That part of your definition hasn't changed.

Head First: But those lengths aren't part of a rightangled triangle, anymore.
sine: But they are very well-defined lengths, and you can use them to form a right-angled triangle! If you're dealing with an angle in a circle, \mathbf{t} : a vector going from the center to the edge of the circle. Then the x-component is one side, and the y-component is the other side.

Head First: That's all fine, I suppose... but how do I work out which side is the opposite and which is the adjacent?
sine: Well, angles in physics are always measured
counter-clockwise from the horizontal. If your angle's smaller than a right angle, sine is the ratio of the y-component and the radius. And my friend cosine is the ratio of the x-component and the radius.

Head First: Well, sure, that's what we already knew. But when you start having the sine of angles larger than a right angle... that's when it gets a bit hairy.
sine: But I'm still the same! I'm still the ratio of the y-component and the radius.
Head First: I guess you are... though that means you're not as exclusive as you once were, doesn't it? sine: Yeah, sadly, there will always be two different angles that have the same value of sine.
Head First: And that can be a downer, can't it? I mean, we've seen you looking negative recently.
sine: That's true. I'll be negative for any angle larger than halfway around, as the y-component of the radius vector will point down, not up.

Head First: And then there's your friend cosine. He's negative at different times from you, isn't he? Doesn't that make it difficult for you to work together sometimes?
sine: Not really. We're both aware of when the other is going to be positive or negative. Just remember that in the top-right quadrant (where the angle is less than a right angle) we're both positive. Then you can work out which direction is positive for each of us and take it from there.

Head First: Thank you, sine. I think we already knew more about you than we thought we did.

Let the games begin!

The equations $y=r \sin (\omega t)$ and $x=r \cos (\omega t)$ work perfectly. Jane plugs them into her screens, and the customers are already lining up. Who doesn't love rotating ducks and light guns?

Even better, you've come up with general equations. If Jane ever wants to change the game, maybe by using a different size of wheel that spins at a different rate, the equations will still work. She can just change the values for r and ω, and she's good to go.

This is what player sees, projected from their perspective.

Just when you thought the duck-shooting odyssey was over, Jane's come up with another feature request. Now she wants to show the value of the duck's velocity from each player's point of view on the display.

Looks like it's time to get out our calculators and pencils again.

Before, you calculated that the duck's linear velocity as it travels round the circle is $3.77 \mathrm{~m} / \mathrm{s}$. So that's got to some into it somewhere.

How would you sketch a velocity-time graph and calculate the value of the duck's velocity from each player's point of view?

Get the shape of the velocity-time graph from the slope of the displacement-time graph

The easiest way to draw a sketch of the velocitytime graph is to use the slope of the displacementtime graph.

This works because velocity is rate of change of displacement, $\mathbf{v}=\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t} . \longleftarrow$ We talked about Therefore: this at the end of chapter 6 .
A large positive slope on the displacement-time graph corresponds to a large positive velocity.

Zero slope on the displacement-time graph corresponds to zero velocity.

A small negative slope on the displacement-time graph corresponds to a small negative velocity.

And so on.

Component vectors are fine here...

You could work out an equation for the duck's velocity using component vectors. Each player sees only one component of the duck's velocity. If the duck is moving directly towards you or away from you, you don't notice its velocity at all. And if the duck is in the center, you see it moving with its linear velocity, v.

...but it's quicker to get an equation for the velocity directly from your graph!

If your velocity-time graph has a "standard shape" and you know its period, you'll be able to work out an equation for the velocity using the amplitude of the graph...

Sharpen your pencil

a. The displacement-time graph for player 1 is shown on the top graph. Use the slope of this displacementtime graph to sketch the duck's velocity-time graph underneath it. Add extreme values to both graphs where appropriate (the circle's diameter is 3.00 m , its period is 2.50 s , and the duck's linear velocity is $3.77 \mathrm{~m} / \mathrm{s}$).
b. Annotate any special points on your graphs to explain why these points occur where they do.

c. What kind of graph does your velocity-time graph resemble in terms of its shape? Use this to write down an equation for $v_{y^{\prime}}$ the y-component of the velocity in terms of v (the duck's linear velocity), ω, and t.
Look back at how
we worked out the
in this chapter if you get stuck.

ω and t.
d. What is the value of the duck's velocity from player 1 's point of view at $t=0.90 \mathrm{~s}$?

Sharpen your pencil
 Solution

a. The displacement-time graph for player 1 is shown on the top graph. Use the slope of this displacementtime graph to sketch the duck's velocity-time graph underneath it. Add extreme values to both graphs where appropriate (the circle's diameter is 3.00 m , its period is 2.50 s , and the duck's linear velocity is $3.77 \mathrm{~m} / \mathrm{s}$).
b. Annotate any special points on your graphs to explain why these points occur where they do.

c. What kind of graph does your velocity-time graph resemble in terms of its shape? Use this to write down an equation for $v_{y^{\prime}}$ the y-component of the velocity in terms of v (the duck's linear velocity), ω, and t.

The shape looks like a graph of $\cos (\theta)$, because the graph starts at the maximum value.
The maximum value of cosine is 1 , but the maximum value of my graph is $v=3.77 \mathrm{~m} / \mathrm{s}$.
So my graph has an amplitude of v.
$v_{y}=v \cos (\theta)$ And also, $\theta=\omega t$, which \| can substitute into my equation:
$v_{y}=v \cos (\omega t)$

This equation only works when θ is in radians, so make sure your calculator is in the correct mode.

$$
\begin{aligned}
& v=r \omega \Rightarrow \omega=\frac{v}{r}=\frac{3.77}{1.50}=2.51 \mathrm{rad} / \mathrm{s}(3 \mathrm{sd}) \\
& v_{y}=v \cos (\omega t)=3.77 \times \cos (2.51 \times 0.90)=-2.39 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})
\end{aligned}
$$

The game is complete!

This time, the duck-shooting odyssey really is over. The game is an overnight fairground success, and Jane's even starting to opening franchises around the country, with thousands and thousands of people playing the game every day!

The maximum deviation from the center that your variable can have is called the amplitude of your graph or equation.

Your Physics Toolbox
You've got Chapter 19 under your belt and added some problem-solving concepts to your toolbox.

New definitions for sine and cosine
If you measure θ counterclockwise from the horizontal:

$$
\begin{aligned}
\sin (\theta) & =\frac{y}{r} \\
\cos (\theta) & =\frac{x}{r}
\end{aligned}
$$

Equation of a sine or cosine graph
General form is:

$$
\begin{aligned}
& x=A \sin (\theta) \\
& x=A \cos (\theta)
\end{aligned}
$$

where A is the amplitude (the maximum value that x can have).

Working out an equation or graph
The amplitude is the maximum value that the variable can have.
Use the substitution $\theta=\omega t$.
The thing returns to the start after 2π radians, or 1 period.

Sine graph
Value is 0 at $\theta=0$.

Cosine graph
Value is maximum at $\theta=0$.

20 Oscillations (part 2)

What do you do when something just happens over and over? This chapter is about dealing with oscillations, and helps you see the big picture. You'll put together what you know about graphs, equations, forces, energy conservation and periodic motion as you tackle springs and pendulums that move with simple harmonic motion to get the ultimate "I rule" experience ... without having to repeat yourself too much.

Get rocking, not talking

You've heard of talking to your plants, but you ain't seen nothing yet! Anne's been in touch to tell you about the latest sensation that's rocking the gardening world - her newly-patented Plant Rocker.

Anne has only patented the idea - the design is up to you!

Patent number 910 - Plant Rocker

A spring-operated horticultural device.
Removes the need to talk to plants.
Rocks the plant gently with a frequency of 0.750 Hz .
Direction of rocking motion doesn't matter.
Amplitude / size of rocking motion doesn't matter.

The plant rocker needs to work for three different masses of plant

Anne has three favorite plants that she wants to rock, but
 they're all different sizes (and different masses).

Your design will need to work for all three plants - and Anne insists that each of the plants needs its very own rocker.

The plants must be rocked individually in three separate plant rockers.

A spring will produce regular oscillations

Anne would like to use a spring to make the plant rocker. She'd start it rocking by pulling back the spring then letting go so that it oscillates. The direction that the plant rocks in doesn't matter and the amplitude of the rocking (the maximum displacement of the plant from the equilibrium position in the center) isn't important either.
However, Anne is very insistent that the plant rocker must have a frequency of 0.750 Hz .
Time to imagine what it's like to ...

Any time you stretch or compress a spring away from its equilibrium position, the spring exerts a force in the opposite direction from the displacement.

When you pull the plant to the left and let go, the force that the spring exerts on it accelerates the plant to the right. As the spring becomes less stretched, it exerts a smaller force. This continues until the spring is back at its equilibrium position. There is no net force on the plant when the spring is in the equilibrium position.

With no net force, the plant continues with the same velocity, overshoots the equilibrium position and begins to compress the spring. As the spring gets shorter and shorter, it exerts a larger and larger leftwards force on the plant, slowing the plant down. The plant is briefly stationary at the maximum displacement.

Then the plant accelerates to the left, passes through the equilibrium position, overshoots and ends up back where it started - a complete cycle of motion.

Displacement from equilibrium and strength of spring affect the force

You know how the plant rocker works qualitatively. Now it's time to be quantitative and start working out some values.

The force that the spring exerts depends on: The change in the spring's length.
The greater the displacement from
equilibrium, the greater the force. The change in the spring's length.
The greater the displacement from
equilibrium, the greater the force. The change in the spring's length.
The greater the displacement from
equilibrium, the greater the force.

If you doble the diphacement from equilibrium, you double the force.

The strength of the spring. The stronger the spring, the greater the force.

Sharpen your pencil

a. Use the equation $\mathbf{F}_{\mathrm{s}}=-k \mathbf{x}$ to work out the
b. The plant rocker is to have a frequency of units of k, the spring constant (in kg, m, s, etc).
0.750 Hz . What is its period?
c. Use the equation $F_{s}=-k \mathbf{x}$ to explain whether you think using a stronger spring (with a larger spring constant) will have an effect on the period.
d. Do you think there are any other variables that would change the period?

anything else?

Sharpen your pencil
Solution
a. Use the equation $\mathbf{F}_{s}=-k \mathbf{x}$ to work out the units of k, the spring constant (in kg, m, s, etc).

$$
\begin{aligned}
F=-k x \Rightarrow m a & =-k x \\
\Rightarrow k=-\frac{m a}{x} \Rightarrow[k] & =\frac{[m][a]}{[x]} \\
{[k] } & =\frac{\mathrm{kg} \cdot \mathrm{~m} / \mathrm{s}^{2}}{m} \quad[k]=\mathrm{kg} / \mathrm{s}^{2}
\end{aligned}
$$

b. The plant rocker is to have a frequency of 0.750 Hz . What is its period?

Period, T, is number of seconds per cycle. Frequency, f, is number of cycles per second.

$$
T=\frac{1}{f}=\frac{1}{0.750}=1.33 \mathrm{~s}(3 \mathrm{sd})
$$

c. Use the equation $\mathbf{F}_{\mathrm{s}}=-k \mathbf{x}$ to explain whether you think using a stronger spring (with a larger spring constant) will have an effect on the period.
If you have a strong spring and a weaker spring and pull them both back the same displacement at the start, the strong spring will accelerate the plant more rapidly, because a large k means a large force.. Onvce the plant's moved through the equilibrium position, it'll also decelerate the plant and then pull it back in the opposite direction more quickly. So I think a stronger spring will lead to a shorter period.
d. Do you think there are any other variables that would change the period?
$F=m a$, so if the plant is more massive it'll accelerate less when you pull it back. So it won't move so quickly and the period will be shorter. The amount you pull the plant back may also affect the period?

there are no
 Dumb Questions

$Q:$Why do we want to calculate the force that the spring exerts on the plant?
A : Any time you're dealing with forces, it's good to start with a free body diagram and work out the net force (like you did when you were 'being' the plant).
Q: How do you know that doubling the spring's displacement from equilibrium doubles the force?

A: By experimenting with springs! There was a bit of this back in chapter 11 when we were dealing with how scales measure your weight.

$Q:$So how would you measure a spring constant? Surely springs don't come with one written on?

A: A strong spring with a large spring constant will stretch less than a weaker spring when you apply the same force to it by hanging the same mass from it.

So if you measure the spring's displacement from equilibrium (i.e. its change in length) for a variety of masses, you can plot a graph. You can use the graph to calculate the spring constant. You'll calculate a spring constant later on in this chapter.

Q: Are the extremes and the equilibrium position 'special points'?
$A:$ Yes. When the displacement is at its maximum, the force is also at its maximum (though they're in opposite directions). The velocity is zero at the extremes when the plant is changing direction.

In the equilibrium position, there's no net force on the plant, so it continues at its current (and maximum) velocity).

Q:Will thinking about the force help us with the frequency of the oscillations?
A: - We're just getting on to that ...

Sharpen your pencil

Graphs of the plant rocker's motion will help you to work out an equation that connects the spring constant with the frequency of oscillations. The plant starts off at $\mathbf{x}=\boldsymbol{x}_{\mathbf{0}}$.

Sketch graphs of the plant's displacement, velocity and acceleration vs time for one cycle of its motion with a period of 1.33 s (same as a frequency of 0.750 Hz). Start off by marking the 'special points' where you'd find the maximum of each variable, and sketch on from there. We've already put some of them on for you.
 $v_{\text {max }}$ for the max ment. You'll calculate it later.

Use the
'special points' mentioned here to help. I
Hint: use $F=m a$ and $F=-k x$ to work out the maximum value for the acceleration.

Graphs of the plant rocker's motion will help you to work out an equation that connects the spring constant with the frequency of oscillations. The plant starts off at $\mathbf{x}=\boldsymbol{x}_{\mathbf{0}}$.
Sketch graphs of the plant's displacement, velocity and acceleration vs time for one cycle of its motion with a period of 1.33 s (same as a frequency of 0.750 Hz). Start off by marking the 'special points' where you'd find the maximum of each variable, and sketch on from there. We've already put some of them on for you.

A mass on a spring moves like a side-on view of circular motion

Looking at the plant rocker - a mass on a spring - from side on is identical to looking at circular motion from side on.

The displacement, velocity and acceleration-time graphs of a mass on a spring are all sinusoids.

This means that the graphs for the plant's displacement, velocity and acceleration are the same shapes as the equivalent graphs for circular motion viewed from side on.

So the plant rocker must use the same types of equations as the side-on view of circular motion. This means that the equations for the plant rocker's displacement, velocity and acceleration will involve sines and cosines.

A mass on a spring moves with simple harmonic motion

The plant rocker oscillates to-and-fro because of a 'restoring force' from the spring, $\mathbf{F}_{\mathrm{s}}=-k \mathbf{x}$.
The force is directly proportional to the spring's displacement from the equilibrium position and acts in the opposite direction from the displacement. The graphs you sketched of the plant rocker confirm that the acceleration - and therefore the force - is always in the opposite direction from the displacement.

You get simple harmonic motion when the restoring force is directly proportional to the displacement, but in the opposite direction.

This kind of situation, where the restoring force is proportional to the displacement from the equlibrium position, is common enough in physics for it to be given its own name, simple harmonic motion, or SHM.

SHM always produces these kinds of sinusoidal displacement-time, velocity - time and acceleration-time graphs. A "simple harmonic" is another name for a sinusoid.

Can I use the equations for

 frequency and period that I learned for side-on circular motion with simple harmonic motion?
Yes - the equations for the frequency, period, maximum speed, etc are the same

If you set up a mass on a spring and a side-on circular motion on a turntable next to each other, they look identical. The shapes of their displacement-time, velocitytime and acceleration-time graphs are identical.

This means you can use all the equations you already know for the frequency, period and angular frequency of circular motion for simple harmonic motion.

Angular frequency and angular speed

Angular frequency and angular speed both have the same size and both have units of radians per second. They're exactly the same thing, You can get from the frequency, f, to the angular frequency, ω, with the equation:

$$
\omega=2 \pi f
$$

\square

SHM has a frequency and a period, so you can use all the equations you already know from circular motion.
there are no Dumb Questions

Frequency and period

Frequency, f, is cycles per second.
Period, T, is seconds per cycle.
Because they're related like this:

$$
T=\frac{1}{f} \quad f=\frac{1}{T}
$$

You can do all sorts of combining and rearranging equations with these two postit

Q:- It seems like a big jump from a mass on a spring to three sinusoidal graphs. Can you run some of that by me again?

A:: The key thing is that you have a situation where the force is directly proportional to the displacement from the equilibrium position, and in the opposite direction from the displacement. Any time this is the case - whether the force is provided by a spring or something else - you have simple harmonic motion.

QWhat does simple harmonic motion look like?

A:: If you watch the mass on the spring from side-on, you'll see that the mass moves quickly through the equilibrium position but slowly at each end of the motion, and transitions smoothly between these velocities.

$Q:$- Is simple harmonic motion exactly like looking at circular motion from side on?

A:: Yes! If you have simple harmonic motion (SHM) and circular motion with the same period and look at them from side-on, they appear identical.

Q: With SHM there's an acceleration produced by the force of the spring which I can plot on a graph. Where's the acceleration in circular motion?

A:: If an object's moving around a circle, there must be a centripetal acceleration provided by something in order for the circular motion to be possible. So the acceleration-time graph of circular motion viewed from side on would be the component of the centripetal acceleration that you can see from your vantage point.

Actually proving this requires calculus

You did a substitution to work out the maximum value of the acceleration to put on your graph: $\mathbf{F}=-k \mathbf{x}$ and also $\mathbf{F}=m \mathbf{a}$, so if you do a substitution for \mathbf{F} you get $-k \mathbf{x}=m \mathbf{a} ;$ rearranged, this is $\mathbf{a}=-\frac{k}{m} \mathbf{x}$

At the moment, this is an equation containing two quantities that are constant throughout the plant's motion $(k$ and $m)$ and two that vary (\mathbf{a} and \mathbf{x}). You can't use one equation to work out two unknowns.

However, acceleration is rate of change of displacement, $\mathbf{a}=\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}$. You can substitute this in the equation $\mathbf{a}=-\frac{k}{m} \mathbf{x}$ to get $\frac{\mathrm{d} \mathbf{v}}{\mathrm{d} t}=-\frac{k}{m} \mathbf{x}$ This doesn't appear to help, as there are still two unknowns (v and \mathbf{x}) in the equation. But as displacement is rate of change of velocity, $\mathbf{v}=\frac{\mathrm{d} \mathbf{x}}{\mathrm{d} t}$, you can make another substitution to get $\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{~d} \mathbf{x}}{\mathrm{~d} t}\right)^{\mathrm{d} t}=-\frac{k}{m} \mathbf{x}$.
This equation only has one unknown, \mathbf{x}, but you need calculus to solve it. Don't worry - we've given you the ready-bake solution on the opposite page

You don't have to do calculus!

You don't need to be able to go line by line from the nasty-looking equation $\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{\mathrm{~d} \boldsymbol{x}}{\mathrm{~d} t}\right)=-\frac{k}{m} \boldsymbol{x}$ to the ready-bake equation on the opposite page. On a non-calculus course, you'll only need to apply the ready-bake equation to solve problems.

Simple harmonic motion is sinusoidal

The mass starts off with its maximum displacement at $t=0$. This means that the equation must be some kind of cosine, as cosine is also at its maximum when $t=0$.
The exact form of the equation is $\mathbf{x}=\mathbf{x}_{0} \cos \left(\sqrt{\frac{k}{m}} t\right)$.

The value you 'put into' the cosine function is equal to the angle in an equivalent side-on circular set-up.
If you set up a plant on a spring and a duck on a turntable next to each other so that they both have the same amplitude and frequency, their motion looks identical from side on.

You can describe circular motion viewed from side on in terms of the angle θ that the turntable has moved through, using the equation $\mathbf{x}=\mathbf{x}_{0} \cos (\theta)$. You can describe circular motion in terms of time using the same equation with the substitution $\theta=\omega t$ to get $\mathbf{x}=\mathbf{x}_{0} \cos (\omega t)$.

As the circular and simple harmonic motion look identical from side on, the equation for SHM has the same form as the equation for side-on circular motion, despite the fact that there are no physical angles involved with the plant on the spring.

Here, θ and ω are "mathematical tools" rather than actual physical angles.

Work out constants by comparing a situationspecific equation with a standard equation x and tare

The 'standard' equation for simple harmonic motion (and circular motion from side on) that starts at a maximum is $\mathbf{x}=\mathbf{A} \cos (\omega t) \longleftrightarrow$ you met this $\mathbf{X}=A \operatorname{COS}$ (wt)
The equation for the plant's displacement is $\mathbf{x}=\mathbf{x}_{0} \cos \left(\sqrt{\frac{k}{m}} t\right)$.
If you 'line up' these two equations, you can see that they're identical in 'form' but that there are different variables in 'important places'.

Look at the amplitude

Both equations consist of a cosine multiplied by something. In the 'standard' equation, that something is \mathbf{A}, the amplitude, which gives you the maximum value that the equation can have (since the maximum value of cosine is 1).
In your displacement equation, the amplitude is \mathbf{x}_{0}, which is how far you pulled the plant rocker back at the start - it's the maximum value the displacement can have.

You have three plants with masses of 100, 250 and 500 grams respectively. You wish to attach each of them to an individual spring so that they can be rocked horizontally with a frequency of 0.750 Hz .
a. Compare the equation $\mathbf{x}=\mathbf{x}_{0} \cos \left(\sqrt{\frac{k}{m}} t\right)$ with the standard equation for simple harmonic motion to work out an equation for the frequency of the plant rocker.
b. Check your equation over by imagining what would happen if k and m were altered one at a time. Jot down your thoughts about whether your equation behaves as the plant would in real life.
c. Calculate the spring constant required to rock each plant with a frequency of 0.750 Hz when the plant rocker is pulled back to $\mathbf{x}_{0}=10.0 \mathrm{~cm}$ at $t=0$ to start off with.

Hint: You'll need to work
out its units as well.
d. Would it be possible to use the same strength of spring for all three plants if you pulled the plants back different distances to start off the plant rocker? Why / why not?

Sharpen your pencil
 Solution

You have three plants with masses of 100, 250 and 500 grams respectively. You wish to attach each of them to an individual spring so that they can be rocked horizontally with a frequency of 0.750 Hz .
a. Compare the equation $\boldsymbol{x}=\boldsymbol{x}_{0} \cos \left(\sqrt{\frac{k}{m}} t\right)$ with the standard equation for simple harmonic motion to work out an equation for the frequency of the plant rocker.

This works because $f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$
$\omega=2 \pi f$
b. Check your equation over by imagining what would happen if k and m were altered one at a time. Jot down your thoughts about whether your equation behaves as the plant would in real life.

If k is bigger, the equation says that the frequency gets higher. This makes sense, as the force would be larger so the plant would accelerate more and move more quickly.
If m is bigger, the equation says that the frequency gets lower. This makes sense as the force would be the same but the mass would be larger, so the plant wouldn't accelerate as much and would move more slowly.
c. Calculate the spring constant required to rock each plant with a frequency of 0.750 Hz when the plant rocker is pulled back to $\mathbf{x}_{0}=10.0 \mathrm{~cm}$ at $t=0$ to start off with.

100 g plant: $k=4 \pi^{2} \times 0.100 \times 0.750^{2}=2.22 \mathrm{~kg} / \mathrm{s}^{2}(3 \mathrm{sd})$
250 g plant: $k=4 \pi^{2} \times 0.250 \times 0.750^{2}=5.55 \mathrm{~kg} / \mathrm{s}^{2}(3 \mathrm{sd})$
500 g plant: $k=4 \pi^{2} \times 0.500 \times 0.750^{2}=11.1 \mathrm{~kg} / \mathrm{s}^{2}(3 \mathrm{sd})$

You need the masses to be in kilograms, not grams.
d. Would it be possible to use the same strength of spring for all three plants if you pulled the plants back different distances to start off the plant rocker? Why / why not?

No, because the frequency doesn't depend on the amplitude, only the spring constant and the mass. So the frequency will be the same however far back you pull the plant at the start.
is the standard equation for any SHM. For a mass on a spring,
A Use this equation to solve ANY SHM problem.
ω is a tool that gives you what you want to find out.

Question Clinic: The "This equation is like that one" Question

In physics, you sometimes come across specific

instances of general equations. One example of this is the general equation for simple harmonic motion, $x=A \cos (\omega t)$. ANY object moving with simple harmonic motion will have an equation of this form (or an equation of the form $x=A \sin (\omega t)$ if the motion starts at $x=0$. In the equation, A represents the amplitude - the maximum value of x. And the argument of the cosine is always equal to w t. This means that you can calculate w, and from it f and T.
the equation is defined here.

This is the amplitude

This means that you compare it with the equation $x=A \cos (\omega t)$ to get the amplitude and angular frequency.

12. The displacement of a mass, m, oscillating on a spring with spring constant k, after time, t, is given by the equation $x=x_{0} \cos \left(\sqrt{\frac{k}{m}} t\right)$
a. By comparing this equation with the standard equation for simple harmonic motion, work out

This is the angular frequency, ω an equation for f, the frequency of the oscillator. So $\omega=\sqrt{\frac{k}{m}}$

b. Calculate the spring constant required to rock a T100 gram plant with a frequency of 0.750 Hz .

You will often have to use the equation you work out to do a calculation. Don't worry - if you get the equation wrong then work the numbers through OK, you'll get partial credit.

See also the equation
$y=m x+c$, covered in
appendix i.

The frequency of SHM is the same, whatever the amplitude.

SHM and circular motion viewed from sideon look exactly the same. If you follow two objects at different radii on a rotating disc, they have the same period but the outer object moves more rapidly and appears to 'overtake' the inner one before shooting out to a larger amplitude. Because it's travelling more rapidly, the outer object requires a larger centripetal force to maintain its circular motion.

You can calculate ω from T. This then opens up being able to calculate k and m, as ω

The angular frequency depends only on k and m. Therefore, the frequency and period depend only on k and m, but not on the amplitude.

It's the same with a mass on a spring. If you pull the spring further back at the start, a larger force acts on the mass, and the mass achieves a higher velocity through the equilibrium position. But this means that the mass has more momentum, so it 'overshoots' further than an oscillation with the same mass and a smaller amplitude.

However large the amplitude of the mass's oscillations, the SHM will always have the same period, and the same frequency.

The frequency, f, is the number of cycles per second, $\frac{1}{T}$

The frequency and period of SHM don't depend on the amplitude.

You rock! Or at least Anne's plants do

You've designed Anne's patented horticultural talk-free device - and it rocks! First of all, you worked out how the spring makes the plant oscillate and found out about Hooke's Law, $\mathbf{F}=-k \mathbf{x}$.

Then you sketched graphs of the plant's displacement, velocity and acceleration and spotted that they have similar shapes to graphs of circular motion when the motion is viewed from side on. This is simple harmonic motion - and you always get these shapes of graphs when the restoring force is proportional to the displacement from the equilibrium position.

> Simple harmonic motion is sinusoidal. This lets you calculate the frequency, period, amplitude, etc, as the equation has a standard format.

After getting the ready-bake (calculus-derived) equation for the displacment, $\mathbf{x}=\mathbf{x}_{0} \cos \left(\sqrt{\frac{k}{m}} t\right)$, you compared it with the 'standard' equation for simple harmonic motion $\mathbf{x}=\mathbf{A} \cos (\omega t)$. Comparing the arguments of the cosines in the equations let you write down the equation $\omega t=\sqrt{\frac{k}{m}} t$ and then $\omega=\sqrt{\frac{k}{m}}$, which enabled you to calculate the spring constant each plant would need.

And it doesn't matter how far back you pull the plant to start it off, as the frequency and period of SHM don't depend on the amplitude of the motion.

But Anne forgot to mention someting ...

A compressed or stretched spring has elastic potential energy. You can use energy conservation to solve problems that involve springs.

To use force, acceleration, velocity and displacement here, you'd have to go and take a calculus course first. Best to use energy ...

Jim: I guess that the maximum velocity's gonna depend on how far back we pull the plant at the start.

Frank: Yeah, the larger the displacement from equilibrium, the larger the force from the spring and the larger the acceleration. The plant has its maximum velocity as it goes through the equilibrium position, before the spring starts to slow it down again.

Joe: But if the initial displacement is too large, the plant will go too fast. We need to calculate exactly how far back we need to pull the plant to give it a velocity of $1.50 \mathrm{~m} / \mathrm{s}$ in the center.
Frank: I guess we could go take a calculus class then come back and have a go at solving those sinusoidal equations. NOT!!

Jim: I'm sure there must be another way - if we draw enough free body diagrams and force vectors, maybe we'll spot something.

Joe: Hey ... we're only thinking about using forces. But isn't it usually easier to use energy in problems where that's possible?

Frank: Perhaps ... differences drive change that lead to energy transfer. Well, the velocity of the plant is changing all the time.

Joe: And so's the length of the spring. You start off with elastic potential energy in the stretched spring, then have entirely kinetic energy in the equilibrium position, and then entirely potential again at the other extreme.

Jim: Yeah when the velocity is at its maximum, all of the potential energy the spring had at the start is now kinetic energy $K=1 / 2 m \mathbf{v}^{2}$.
Frank: Which has \mathbf{v} in it! If we know how large the spring's potential energy store is at the start, we can use energy conservation to calculate the plant's velocity in the center, when the elastic potential energy is zero. That works!

Joe: So we give the spring potential energy at the start ...
Jim: Yeah, we do work on the spring, to do that, right? And work $=$ force \times displacement. Sorted!

Joe: Um ... but which force do we use? As you stretch the spring, the force we're doing work against gets larger and larger.
Frank: The work is the area under the force-displacement graph. Can we calculate that?

This is a hard exercise. Take time to
get your head around it, and don't
be worried if it takes you a while.
a. Use the axes below to sketch a graph of force applied vs displacement as you stretch a spring with spring constant k to displacement \mathbf{x}_{0}. As your graph is of the force you need to apply to extend the spring, rather than the force that the spring exerts on you, the force and displacement lie in the same direction, and the value of the force is $\mathbf{F}=k \mathbf{x}$.

b. Mark on the value of \mathbf{F} when the displacement $=\mathbf{x}_{0}$.
c. The total work done is the total area between your graph and the horizontal axis. Calculate this area and hence write down an equation for the work done in stretching the spring to displacement \mathbf{x}_{0}.
d. How much elastic potential energy, $U_{s^{\prime}}$ is transferred to a spring with spring constant k by stretching it displacement \mathbf{x}_{0} from its equilibrium position?

Sharpen your pencil

Solution
a. Use the axes below to sketch a graph of force applied vs displacement as you stretch a spring with spring constant k to displacement \mathbf{x}_{0}. As your graph is of the force you need to apply to extend the spring, rather than the force that the spring exerts on you, the force and displacement lie in the same direction, and the value of the force is $\mathbf{F}=k \mathbf{x}$.

The area under the graph is a triangle. This has half the area that a rectangle with the same side lengths would.
b. Mark on the value of \mathbf{F} when the displacement $=\mathbf{x}_{0}$.
c. The total work done is the total area between your graph and the horizontal axis. Calculate this area and hence write down an equation for the work done in stretching the spring to displacement \mathbf{x}_{0}.

Work done $=$ area under F_{-x} graph.
Work done $=$ area of triangle
The area of the triangle is half the area of a rectangle with the same horizontal and vertical sides.

$$
\begin{aligned}
\text { Work done }=\text { Area } & =1 / 2 \times \text { base } \times \text { height } \\
& =1 / 2 \times x_{0} \times k x_{0} \\
\text { Work done } & =1 / 2 k x_{0}^{2}
\end{aligned}
$$

The work done against a force is equal to the area under the force - displacement graph.

d. How much elastic potential energy, $U_{s^{\prime}}$ is transferred to a spring with spring constant k by stretching it displacement \mathbf{x}_{0} from its equilibrium position?

$$
u_{s}=1 / 2 k x_{0}^{2}
$$

Potential Cosharpen your pencil

a. Sketch graphs of K, the kinetic energy and U, the potential energy, for one complete cycle of the plant rocker.

b. Use conservation of energy to come up with an equation for $\mathbf{v}_{\text {max }^{\prime}}$ the maximum velocity of the plant, in terms of k, m and \mathbf{x}_{0}, the initial (and maximum) displacement.
c. A plant, mass 100 g , is attached to a horizontal spring, spring constant 2.22 Nm . What should its initial displacement, \mathbf{x}_{0}, be if the plant's maximum velocity is to be $1.50 \mathrm{~m} / \mathrm{s}$?

Solution
a. Sketch graphs of K, the kinetic energy and U, the potential energy, for one complete cycle of the plant rocker.
 when the displacement is negative.
b. Use conservation of energy to come up with an equation for $\mathbf{v}_{\text {max }}$, the maximum velocity of the plant, in terms of k, m and $\mathbf{x}_{0^{\prime}}$, the initial (and maximum) displacement.

$$
\begin{aligned}
\operatorname{Maximum} K & =\text { Maximum } U \\
7 / 2 k x_{0}^{2} & =1 / 2 m v_{\max }^{2} \\
v_{\max } & =\sqrt{\frac{k}{m}} x_{0}
\end{aligned}
$$

c. A plant, mass 100 g , is attached to a horizontal spring, spring constant 2.22 Nm . What should its initial displacement, $\boldsymbol{x}_{0^{\prime}}$, be if the plant's maximum velocity is to be $1.50 \mathrm{~m} / \mathrm{s}$?

$$
\begin{aligned}
v_{\max }=\sqrt{\frac{k}{m}} x_{0} \Rightarrow x_{0} & =\sqrt{\frac{m}{k}} v_{\max } \\
x_{0} & =\sqrt{\frac{0.100}{2.22}} \times 1.50 \\
x_{0} & =0.318 \mathrm{~m}(3 \mathrm{sd})
\end{aligned}
$$

$\mathbf{U}_{\mathrm{s}}=1 / 2 k \mathbf{x}^{2}$

The elastic potential energy of a spring depends on the amplitude and the spring constant.

there are no Dumb Questions

QBut what about the mass of the spring? We didn't include that in the energy calculation, just the mass of the plant.
A: We made an approximation that the spring is massless - both here and before, when we were dealing with forces. If the mass of the spring is negligible compared to the mass of the plant, this is a reasonable simplifying assumption to make. If the mass of the spring wasn't negligible, we'd have to take into account the fact that different parts of the spring have different displacements - which is hard!

The plants rock - and you rule!

You've tied together your knowledge from lots of different areas of physics to give the plant rocker a known frequency and maximum velocity. Excellent!

- Forces - analysing a problem using a free body diagram.
- Displacement, velocity and acceleration - using the relationships between them.
- Graphs - showing what the motion's like visually.
- Circular motion - spotting that the motion is like circular motion viewed from side on.

> When you combine superpowers like this, you're really thinking like a physicist!

But now the plant rocker's
 frequency has changed

Although Anne is initially pleased with your solution, she's soon back in touch with a problem - the plant rocker's frequency has changed. Each cycle's taking longer than it did before, so the frequency is lower than it should be.

Jim: Anne's been watering the plants, right? Maybe the spring got rusty or something, and its spring constant changed.
Joe: Actually - if she's watered the plants, then their masses will have changed.
Frank: Oh yeah - the frequency depends on the mass, doen't it.
Jim: Yeah, a more massive plant won't accelerate so rapidly. The force on it is still the same, but $\mathbf{F}=m \mathbf{a}$ so the acceleration will be smaller if m is larger. The plant will take longer to do one oscillation. That's why the frequency's gone down and the period's gone up.

Joe: This is a pretty serious design flaw - the plant's mass is going to change anyway as it grows, even if it doesn't get watered that often. I wonder what we can do to fix it.

Frank: So the problem is the mass, yeah?!

Jim: Yeah - if the mass was constant, then the frequency would be constant (as long as the spring didn't weaken or anything).
Frank: So can we make the mass divide out somehow? We've worked with equations before where that happened.
Joe: Ooh, I think I see what you mean. When we've done calculations involving gravity, like orbits and stuff, then the mass has sometimes divided out completely because it appeared on both sides of the equation.
Jim: Maybe if we hang the spring vertically, it'll be OK. Then gravity will be acting on the plant as well.
Joe: If the mass did divide out, we wouldn't need a different spring for each plant. Actually, this feels a bit wrong. Surely an elephant bouncing vertically on a spring would have a different frequency of oscillation from a mouse on the same spring?

Frank: We might as well test it out with math before we try building it. That shouldn't take too long ...

Watering a plant
increases its mass.

The frequency of a horizontal spring depends on the mass

The equation for the frequency of the plant attached to the horizontal spring is $f=\frac{1}{2 \pi} \sqrt{\frac{k}{m}}$. If you increase the mass of the plant, the frequency becomes smaller, as you are dividing by the m on the right hand side of the equatuon. So the plant takes longer to do one cycle.

This is because $\boldsymbol{F}=m \boldsymbol{a}$. If the plant's mass is larger it accelerates less when acted on by the same force of the stretched spring. Watering the plants increases the mass. Anne is adamant that the plant rocker should always have a frequency of 0.750 Hz . So this design with a horizontal spring won't work, as the frequency changes when the mass changes.

Will using a vertical spring make a difference?

When gravity is the only force acting on an object, the object's acceleration doesn't depend on its mass.

In chapter 18 , you worked out that the frequency and period of a satellite's orbit are completely independent of its mass.

The guys have had the idea that perhaps by hanging the plant from a vertical spring, where gravity has an influence, the physics will work out differently from the horizontal spring.

You need to work out whether they're right!

Perhaps this is also the case for a vertical spring ... perhaps not.
a. A spring hangs from the ceiling. When you attach a plant to it, it extends to an new equilibrium position where the plant is at rest. Draw a free body diagram showing all of the forces acting on the plant in this new equilibrium position.

Hint: Look
back at page
807 for an
equation for
the force
from a spring.
c. You pull the plant down a further 4.00 cm and let go. Draw a free body diagram of the forces acting on the plant at the moment you let go, and calculate the net force on the plant.
d. What would be the net force on a plant attached to a horizontal spring that was extended 4.00 cm from its equilibrium position at the moment it's released?
b. If the plant has a mass of 0.100 kg and the spring extends by 44.1 cm , what is the spring constant?

Sharpen your pencil Solution

a. A spring hangs from the ceiling. When you attach a plant to it, it extends to an new equilibrium position where the plant is at rest. Draw a free body diagram showing all of the forces acting on the plant in this new equilibrium position.

Force from spring $=-k x$
There's no net
force on the plant.
b. If the plant has a mass of 0.100 kg and the spring extends by 44.1 cm , what is the spring constant?

No net force, so: $m g-k x=0$

$$
\begin{aligned}
k x & =m g \\
k & =\frac{m g}{x}=\frac{0.100 \times 9.8}{0.441} \\
k & =2.22 \mathrm{~kg} / \mathrm{s}^{2}(3 \mathrm{sd})
\end{aligned}
$$

c. You pull the plant down a further 4.00 cm and let go. Draw a free body diagram of the forces acting on the plant at the moment you let go, and calculate the net force on the plant.
Weight $=m g$

This is 44.1 cm

Force from spring $=-k x \quad F_{\text {net }}=m g-k x$

$F_{\text {net }}=0.100 \times 9.8-2.22 \times 0.481$
$F_{\text {net }}=-0.878 \mathrm{~N}(3 \mathrm{sd})$

Weight $=m g$
d. What would be the net force on a plant attached to a horizontal spring that was extended 4.00 cm from its equilibrium position at the moment it's released?
$\underset{x=0.20400 m}{F}$

$$
F_{\text {net }}=-k x
$$

The small difference

$$
F_{\text {net }}=-2.22 \times 0.0400
$$ between these two values is because of

$$
F_{\text {net }}=-0.888 \mathrm{~N}(3 \mathrm{sd})<
$$ rounding. They're basically the same net force.

e. Do you think that the spring being vertical will affect the frequency and period of the plant's oscillations compared with the horizontal spring? Why / why not?
When you pull the plant the same distance from its equilibrium, the force on it is the same. All that's changed by hanging it vertically is the equilibrium position.
I think the frequency will be the same as for the horizontal spring, as the restoring force is unchanged.

Jim: But at least the spring wasn't our idea originally. It was Anne who suggested we use a spring right at the start!
Joe: So we gotta think of something else that goes to and fro like clockwork, but that doesn't depend on the mass of the plant.
Frank: Like clockwork you say, hmmm. Springs get used to run some watches and clocks, don't they?
Jim: Yes, but in the clocks, the mass of the thing the spring's attached to inside the clock doesn't keep changing. Our problem is that the mass of the plant does change.

Frank: But some clocks use pendulums instead of springs. I wonder if we can use a pendulum for the plant rocker.

Joe: Yeah ... a pendulum goes to and fro regularly. That's how a Grandfather clock works, isn't it? And a pendulum must only have a gravitational force acting on it, so the mass might divide out!
Jim: But the Grandfather clock pendulum goes to and fro with a period of 1 s (or 2 s if it's one tick at each end of the swing - I'm not sure!!. That's too short! We need the plant rocker to have a frequency of 0.750 Hz , which we already said is a period of 1.33 s .
Frank: Maybe giving a pendulum plant rocker a larger amplitude by pulling it back further at the start will change the period. The plant will have more distance to cover for each swing.
Joe: And maybe we could change the length of the pendulum - the distance from the ceiling to the plant. That might affect the frequency and period too.
Jim: And we're still not sure if the frequency and period of the pendulum depend on the mass of the plant. Though gravity is the only force acting on the plant (apart from the tension in the string it's attached to) so it could be more promising than the spring.

Frank: Yeah ... I'm just trying to imagine whether an adult will swing slower or faster or just the same as a child if they're sitting on a swing. I'm not sure.

Joe: I guess we ought to do an experiment to work out whether the mass, length or amplitude affect the period of the pendulum - and if so, how they affect them.

[Try it!

Your job is to work out which variables (mass of pendulum bob, length of string, amplitude of swing) affect the frequency and period of a pendulum. This is a completely open-ended investigation - you can go about it however you like, designing and doing your own experiments, drawing your own graphs and writing up your conclusions.

There'll be a competition page on the Head First Physics website where you can submit your write-up, with prizes for the best entries.

A pendulum swings with simple harmonic motion

A pendulum's equilibrium position is when the bob is hanging straight down. When the bob hangs straight down, its weight (due to gravitational force) and the tension in the string are both vertical. As the bob doesn't accelerate vertically, there must be no net force on the bob.

Perpendicular component provides a net force that restores towards equilibrium position.

Just like the mass on the spring, the net force is proportional to the displacement of the mass from the equilibrium position (as long as the angle it's moved through is less than around 10°). This satisfies the requirement for simple harmonic motion, The equation for the displacement of a pendulum is given to the right.

If the bob is pulled back a short displacement, through the angle θ, the bob's weight vector is no longer parallel to the tension in the string. A component of the bob's weight is perpendicular to the string, and provides a net force that causes the bob to accelerate towards the equilibrium position. As the bob nears equilibirum, the angle becomes smaller and the net force also becomes smaller.

Through the equilibrium position, the net force is zero, so the bob continues with a constant velocity. And as the bob swings the other way, the net force becomes larger again, slowing the bob down until it reaches the top of its swing on the other side.

What does the frequency of a pendulum depend on?

The equation for the displacement of a simple pendulum (a pendulum that moves with SHM) that starts at a maximum is $\boldsymbol{x}=\boldsymbol{x}_{0} \cos \left(\sqrt{\frac{g}{l}} t\right)$. Like the equation for the period of the mass on a spring, this equation is derived using calculus, but is provided here as a ready-bake equation.

Your experiment and the ready bake equation both tell you the same thing: the period of the pendulum depends on the length of the string that attaches the bob to the celing, but not on the mass or the amplitude.

As well as this, the equation says that the period of the pendulum depends on the acceleration due to gravity. Practically speaking, this isn't something you have to worry about with the plant rocker, but it does mean that your favorite Grandfather clock won't keep time on the moon!

The frequency and period of a pendulum depend on its length, but not on its mass.

Sharpen your pencil

It's time to work out the length of the pendulum you'll need for the plant rocker. 807.
Hint: Use the equations on the post-its on page
a. Use the ready-bake equation for the plant's
displacement, $\boldsymbol{x}=\boldsymbol{x}_{0} \cos \left(\sqrt{\frac{g}{l}} t\right)$, to get an equation for the frequency of the plant rocker.
b. Calculate the length of pendulum you require for the plant rocker to have a frequency of 0.750 Hz .

Hint: Compare
the equation
with the
"standard"
equation
for SHM.
c. Use the equation you worked out in part a. to explain what will happen to the period of the plant rocker if you double the length of the pendulum.
d. If you took the pendulum to the moon, where acceleration due to gravity is a sixth of its value on earth, what effect would this have on the period of the pendulum?

Solution

It's time to work out the length of the pendulum you'll need for the plant rocker.
a. Use the ready-bake equation for the plant's displacement, $\boldsymbol{x}=\boldsymbol{x}_{0} \cos \left(\sqrt{\frac{g}{l}} t\right)$, to get an equation for the frequency of the plant rocker.

c. Use the equation you worked out in part a. to explain what will happen to the period of the plant rocker if you double the length of the pendulum.

$$
\begin{aligned}
T & =\frac{1}{f} \text { and } \quad f=\frac{1}{2 \pi} \sqrt{\frac{g}{1}} \\
\Rightarrow T & =2 \pi \sqrt{\frac{T}{9}}
\end{aligned}
$$

If you double the length of the pendulum, the part under the square root becomes twice as large as it was before., so T becomes $\sqrt{2}$ larger than it was before.
b. Calculate the length of pendulum you require for the plant rocker to have a frequency of 0.750 Hz .

$$
\begin{aligned}
f & =\frac{1}{2 \pi} \sqrt{\frac{g}{1}} \\
\Rightarrow \quad f^{2} & =\frac{1}{4 \pi^{2}} \times \frac{g}{1} \\
\Rightarrow 1 & =\frac{1}{4 \pi^{2}} \times \frac{g}{f^{2}}=\frac{1}{4 \pi^{2}} \times \frac{9.8}{0.750^{2}} \\
1 & =0.442 \mathrm{~m}(3 \mathrm{sd})
\end{aligned}
$$

d. If you took the pendulum to the moon, where acceleration due to gravity is a sixth of its value on earth, what effect would this have on the period of the pendulum?

$$
T=2 \pi \sqrt{\frac{T}{9}}
$$

If you make g a sixth of its value, the part under the square root becomes six times larger (since g is on the bottom). So T becomes $\sqrt{6}$ larger than it was before.
 \section*{\title{
It's really important to
 \section*{\title{
It's really important to be able to move between be able to move between f , T and quickly f , T and quickly and comfortably - so and comfortably - so practise doing that!
}} practise doing that!
}}

Angular frequency and angular speed

Angular frequency and angular speed both have the same size and both have units of radians per second. They're exactly the same thing, You can get from the frequency, f, to the angular frequency, ω, with the equation:

Frequency and period Frequency, f, is cycles per second. Period, T, is seconds per cycle.

Because they're related like this:

$$
T=\frac{1}{f} \quad f=\frac{1}{T}
$$

The pendulum design works!

You use your answers to make a pendulum plant rocker for Anne - and it works perfectly.

Even better, the frequency doesn't depend on the mass of the plant, so you can use the same design for all three of Anne's favorites!

bULLET POINTS

- If the restoring force is proportional to the displacement, you have simple harmonic motion (abbreviated to SHM)
- SHM looks like circular motion from side on, and the equations for the displacement, velocity and acceleration are all sinusoidal (shaped like a sine or cosine graph).
- For a spring, the period depends on the mass and the spring constant, but not the amplitude.

> You can use this to solve problems with pendulums as well as with springs.

- For a pendulum with small amplitudes, the period depends on the length and the gravitational field strength, but not on the mass.
- It's fine to use forces to analyse SHM - but you reach a point where you require calculus. So use energy to solve SHM problems where you can.
- The kinetic energy in the equilibrium position (where the force and displacement are zero) is equal to the potential energy at an extreme. y

Circular motion equation:

$$
v=r \omega
$$

Yes, you can apply your circular motion equations here too!

Simple harmonic motion looks like side-on circular motion. This means that if you have SHM and circular motion that both have the same amplitude and frequency, the maximum speed of the SHM will be the same as the speed of the circular motion.
> for circular motion and SHM if they both have the same amplitude and frequency.
> The MAXIMUM speed is the same

Question Clinic: The "Vertical spring" Question

The vertical spring question is a common way of testing

This indicates that the plant is in equilibrium, with no net force acting on it.

The forces should add to zero.

0

This wording indicates that the spring is vertical, so you need to take the object's weight into account.

If the spring extends, it must be exerting a force as $F=-k x$.

So the force from the spring should be on your free body diagram.
54. A spring hangs downwards from the ceiling. your understanding of simple harmonic motion. First of all, something is hung from the spring to stretch it to a new equilibrium position. Then the spring is stretched or compressed further and released. The question asks you to work out the frequency or period of the oscillations

If you see a spring, think 'simple harmonic motion'.
a. When you attach a plant to the spring, it extends until the plants at rest. Draw a free body diagram showing all of the $<$ forces acting on the plant at this point.
b. If the plant has-a mass of 0.100 kg and the spring extends by 44.1 cm , what is the spring constant, k ?
C. You pull the plant down a further 4.00 cm and let go.

Calculate the period of the plant's oscillations.

Use the diagram you drew in part a. with these values.

Note the word distance, and the complete cycle. It'll travel 4.00 cm to the center, another 4.00 cm to the far side, then the same again: a total of 16.00 cm .

Make sure you use the displacement from the NEW equilibrium position when you do the SHM calculation.

The key thing in this question is defining the displacement correctly. The initial displacement creates a new equilibrium position, and also allows you to calculate the spring constant. When you do the SHM calculation, you should redefine the new equilibrium position as $x=0$ and use the value for the spring constant that you calculated earlier to work out the frequency or period.

Question Clinic: The "How does this depend on that" Question

Many questions have no numbers in them at all, and are
a. You can do this part without an equation - the period of SHM doesn't depend on its amplitude.
b. You need the equation for the total energy, $E=1 / 2 k A^{2}$ As the ' A ' is squared, if you double A, E becomes four times as large.
c. What happens to the maximum speed of the mass if you double the amplitude to $2 A$?
d. What happens to the period if you double the mass to $2 m$?

Simple harmonic Motion where a restoring force to an equilibrium motion position is directly proportional to the displacement from the equilibrium position.

A spring exerts a restoring force proportional to the displacement from its equilibrium position.

For small angles, something swinging undergoes a restoring force proportional to the displacement from its equilibrium position.

Your Physics Toolbox

 You've got Chapter 20 under your beltand you've added some problem-solving
concepts to your toolbox.

Hooke's Law

Hooke's Law says that the force a spring exerts is proportional to its displacement from equilibrium, and in the opposite direction to the displacement.

$$
F=-k x
$$

(k is the spring constant)

Simple harmonic motion

Oscillation you get when the restoring force is directly proportional to the displacement from the equilibrium position.
Abbreviated to SHM.

Mass on a spring

Frequency and period depend on the mass and the spring constant.
Frequency and period are independent of the amplitude.
Frequency and period independent of the gravitational field strength (horizontal and vertical springs have the same frequency).

Comparing equations

 If your equation has the same form as a 'standard' equation, you can write them one above each other and say that terms are equivalent.This is how you can get the equation for the frequency of an oscillator - by comparing its equation with the 'standard' equation that describes SHM.

Simple pendulum

Moves with SHM for small angles only (θ less than around 10°.

Frequency and period depend on the length of the pendulum and the gravitational field strength.
Frequency and period are independent of mass.
Frequency and period are independent of amplitude for small angles.

SHM graphs

Displacement, velocity and accelerationtime graphs are all sinusoidal.
Start by drawing the displacementtime graph, starting at x_{0}.
Acceleration-time graph exactly mirrors displacement-time graph.
Get velocity - time graph from slope of displacement-time graph

21 think like a physicist

* It's the final chapter

It's time to hit the ground running. Throughout this book, you've been learning to relate physics to everyday life and have absorbed problem solving skills along the way. In this final chapter, you'll use your new set of physics tools to dig into the problem we started off with - the bottomless pit through the center of the Earth. The key is the question: "How can I use what I know to work out what I don't know (yet)?"

You've come a long way!

Now you're in chapter 21 - and you're able to use these same words to help you think through and solve problems. You've learned to ask "How can I use what I know to work out what I don't know (yet)?"

Now you can finish off the globe

What better way to use your physics superpowers than to revisit the tunnel through the center of the Earth and really get to grips with what happens there.

Back in chapter 1 , you learned to be part of it by putting yourself at the heart of the problem and asking "What happens next?" and "What's it like?" Now you can also describe what happens using physics terms and concepts.

You spotted that there's a special point in the center where there's no net force on you because everything is symmetrical - you're equally attracted in all directions, and as gravity is a non-contact force, you don't feel crushed. You also realized that you're always attracted towards the center unless you're already in the center.

Acceleration

Be part of it You can use physics terms and concepts to describe what

This means that you initially accelerate as you fall due to the net force on you at the top of the tunnel, briefly move with a constant Force
b. Are there any requirements that need to be met in order for your answer to part a to make sense?
velocity through the center, then decelerate as the gravitational force continues to attract you towards the center. After briefly emerging at the
other end, you do the same thing again in reverse.
a. Use your increased physics knowledge to revisit the question "What's it like?" What does the trip through the Earth now remind you of? Be sure to mention all the parallels you can see.

a. Use your increased physics knowledge to revisit the question "What's it like?" What does the trip through the Earth now remind you of? Be sure to mention all the parallels you can see.

It looks like simple harmonic motion.
There's an equilibrium point in the center where there's no net force on you
The force on you always acts towards the equilibrium position in the center, so is in the opposite direction from the displacement.
You move slowly at the edges and quickly through the center.
b. Are there any requirements that need to be met in order for your answer to part a to make sense?

The restoring force would have to be proportional to your displacement from the equilibrium position, and in the opposite direction from the displacement.
That's the requirement for simple harmonic motion.

Displacement

Simple Harmonic Motion

The round-trip looks like simple harmonic motion

Way back in chapter 1 , you figured out that you'd fall into the tunnel, travel through the Earth, and appear at the other end of the tunnel. Then you'd fall back in again, go through the tunnel in the opposite direction, and end up where you started... and so on.

What's it LIKE?

If you come across a situation you haven't seen before, think about whether you've seen something similar in the past by asking yourself: "What's it like?"

That sounds a lot like simple harmonic motion, something you learned about in chapter 20. Now that you know how to tackle simple harmonic motion problems, we can add a lot of detail to what we figured out before.

But what time does the round-trip take?

A trip through the center of the Earth can be pretty tiring. Suppose you want to place a pizza order so that once you've gone through the Earth and come back again, you can have a nice snack.

Break Neck Pizza promises delivery in 45 minutes... but will you be able to get through the Earth and then back again in time to meet Alex the delivery guy?

What time does your journey through the Earth take?

Equation

Inverse square

Does it SUCK?

Anytime you want

 to use an equation, think about the CONTEXT. Is it 0 K to use the equation here?You can only use your simple harmonic motion equations from chapter 20 if the restoring force is proportional to the displacement.

Joe: Hang on. It's only SHM if the restoring force is directly proportional to the displacement from the equilibrium position of the object that's moving to and fro. We don't know whether the restoring force follows that pattern or not yet.

Frank: Yeah, if the trip through the Earth isn't SHM, we can't use our SHM equations to calculate the time it takes.
Joe: The gravitational force is an inverse square law, isn't it? $\mathbf{F}_{\mathrm{G}}=-\frac{G m_{1} m_{2}}{\mathbf{r}^{2}}$. So if you double the displacement, the force is only a quarter of what it was before. The force isn't directly proportional to the displacement. The force gets smaller as the displacement gets larger!

Frank: Oh yeah. For SHM, the restoring force needs to get larger as the displacement gets larger.

Jim: Hey - didn't we say before that the force is zero in the center of the Earth?! If the equation $\mathbf{F}_{\mathrm{G}}=-\frac{G m_{1} m_{2}}{\mathbf{r}^{2}}$ works at the center of the Earth (where $\mathbf{r}=0$), you're dividing by zero. If you divide by a very small number, you get a very large answer. And if you divide by zero, you get an answer of infinity! Computer says no!
Joe: Yes ... maybe $\mathbf{F}_{\mathrm{G}}=-\frac{G m_{1} m_{2}}{\mathbf{r}^{2}}$ only works when you're outside the Earth. When you're outside, all of the Earth is below you.

Frank: But when you're inside the tunnel, some of the Earth is below you and attracts you downwards. The rest of the Earth is above you and attracts you upwards.

Jim: So the net force on you in the center is zero, as there are equal masses of Earth above and below you. And the net force on you somewhere else in the tunnel depends on how much Earth is above you and how much Earth is below you.
Joe: Looks like we need to work out a different equation for when you're inside the Earth then, if $\mathbf{F}_{\mathrm{G}}=-\frac{G m_{1} m_{2}}{\mathbf{r}^{2}}$ isn't going to work.

You can treat the Earth like a sphere and a shell

The gravitational force between two spheres is $\boldsymbol{F}_{\mathrm{G}}=-\frac{G m_{1} m_{2}}{\mathbf{r}^{2}}$. You can treat each sphere as if its entire mass was concentrated at a single point in the center of the sphere.

If you treat the human body like a very small sphere, you can use this equation to calculate the gravitational force that the Earth exerts on you - as long as you're outside the Earth.

But when you're inside the tunnel, there's Earth above you and below you. Calculating the gravitational force that the Earth exerts on you when you're inside it is a complicated problem!

Try to break down complicated problems into smaller parts.

You already know an equation
for the gravitational force
from a sphere!

Back in time for pizza?

- Trip through Earth looks like SHM. Is it SHM? Is the restoring force proportional to the displacement? \rightarrow Force from shell?
\rightarrow Force from sphere?

If it's SHM , can use SHM equations to calculate time that trip takes.

But you can break down this problem into two parts by thinking of the Earth in two parts. Anytime you're inside the Earth, you're a certain distance (let's call this distance \mathbf{r}) from the equilibrium position in the center of the Earth.
So beneath you, there's a sphere with radius \mathbf{r}. You already know how to calculate the gravitational force exerted on you by a sphere if you know its radius and mass: $\mathbf{F}_{\mathrm{G}}=-\frac{G m_{1} m_{2}}{\mathbf{r}^{2}}<$ We're defining the radius as the displacement away from the center of the Earth. The force acts towards the center of the Earth - hence the minus sign.

The rest of the Earth forms a 'shell.' Some of the shell is below you and some of the shell is above you.

If you can work out an equation for the force exerted on you by the shell, you can add it to the force exerted on you by the sphere. This gives you the net force that the Earth exerts on you while you're inside the tunnel.

So the force from the slice above you is
the force from the slice below you. And the net force from the whole thin shell is If you're further inside the Earth, you can think of the thick shell being made up of many many thin shells. So the net force from the thick shell is also \qquad

zero
equal

Use this space to sum up
what you've discovered:

There's more shell below you than there is above you, so there's more mass below you than there is above you. But the shell below you is (on average) a much larger distance away from you than the shell above you.

The shell above you is totally symmetrical. So for every small piece of Earth to the left of you, there's an equivalent piece to the right. The horizontal components of the gravitational force from these two pieces of Earth are equal but in opposite directions, so they add to zero.

Vertical components add to produce a net force.

If you take a piece of very thin shell, its volume will be its surface area multiplied by its thickness. So the mass of the very thin shell will depend on its surface area.
 on surface area. went. The distances a and b are both scalars.

If you take a small slice of thin shell from above and the equivalent from below, you can think of them as being tiny slices from spheres with radius \boldsymbol{a} and \boldsymbol{b} with surface areas \boldsymbol{a}^{2} and \boldsymbol{b}^{2} respectively. And as the mass of a thin shell depends on its surface area, the masses of the slices are proportional to \boldsymbol{a}^{2} and \boldsymbol{b}^{2}.

Gravitation is an inverse square law. The slice of Earth above you is distance \boldsymbol{a} away, so the force from 1 kg of it is proportional to $\frac{\mathbf{1}}{\boldsymbol{a}^{2}}$. The slice of Earth below you is distance \boldsymbol{b} away, so the force from 1 kg of it is proportional to $\frac{\mathbf{1}}{\boldsymbol{b}^{2}}$. Therefore, the force from the slice at distance ' a ' is proportional to $\boldsymbol{a}^{2} \times \frac{\mathbf{1}}{\boldsymbol{a}^{2}}$ and the force from the slice at distance ' b ' is proportional to $\boldsymbol{b}^{2} \times \frac{\mathbf{1}}{\boldsymbol{b}^{2}}$.

So the force from the slice above you is equal to the force from the slice below you. And the net force from the whole thin shell is zero. If you're further inside the Earth, you can think of the thick shell being made up of many many thin shells. So the net force from the thick shell is also zero.

Forces are equal and
opposite, so net force
from shell is zero.

Use this space to sum up what you've discovered:

The net force from the shell is zero. This is because the forces from the small, close mass above you and the large, far away mass below you are the same size, but in opposite directions.

The net force from the shell is zero!

The net force from the shell is zero

This means that the net force that the shell exerts on you is zero. So the net force exerted on you when you're inside the tunnel must come entirely from the sphere, radius r.

If that force is proportional to r, then you'll move through the Earth with simple harmonic motion and can use the equations you already know to calculate the time you take to get back home again.

Back in time for pizza?

Trip through Earth looks like SHM.
Is it SHM? Is the restoring force proportional to the displacement? \rightarrow Force from shell? This is zero!!
\rightarrow Force from sphere?

If it's SHM, can use SHM equations to calculate time that trip takes.

Force from sphere?

to calculate time that trip takes.

there are no Dumb Questions

 What's so special about a shell?

A:You've worked out that the force the shell exerts on you is zero. So the net force on you must come entirely from the sphere.
 What's so special about a sphere? A: You already know how to calculate the gravitational force an object experiences as a result of being outside a sphere.
Q: Doesn't the equation for the gravitational force exerted by a sphere only work if l'm outside the sphere? A: When your displacement is r from the center of the Earth, then you're outside the sphere with radius \mathbf{r}.

Q:Do I need to understand and reproduce all of that?!

A:Don't worry - you won't be asked to do something that difficult in an exam. The big take-away is that the net force from the shell is zero because the forces from a small mass close by and a large mass far away added to zero. If you got that, you're great!
Q: But the Earth isn't a sphere and a shell ... is it?!

A:- Treating the Earth like a sphere and a shell is a mathematical tool. In the same way, moving objects don't have velocity vector arrows and components drawn on them in real life, but vector arrows are very useful tools in physics. Treating the Earth like a sphere and a

Q- Why choose that particular radius, r, as the place to draw the boundary between the sphere and shell?
$A: r$ is your displacement from the equilibrium position in the center of the Earth. When we did SHM in chapter 18, we called this displacement \mathbf{x}. Here it's better to use \mathbf{r} so that you remember that the displacement from the equilibrium position is also a radius.

If, when your displacement is r, the force exerted on you by the Earth is proportional to r, then your trip through the Earth is SHM. The period of the SHM is the same as the time it takes you to get back to where you started - the time you want to calculate!

Sharpen your pencil

Your job is to work out whether you move through the Earth with simple harmonic motion. For it to be simple harmonic motion, the force on you must be proportional to your displacement from the equilibrium position in the center of the Earth.

So is the net force on you proportional to \mathbf{r} or not?
a. Use the ready bake equation for the volume of a sphere to write down equations for V_{E}, the volume of the Earth, and V_{s}, the volume of the sphere inside the Earth, radius \mathbf{r}. (Use the symbol \mathbf{R}_{E} for the radius of the Earth.)

Reapy Bake Equation

Volume of a sphere:

$$
V=\frac{4}{3} \pi r^{3}
$$

b. Use the fact that the small sphere, radius \mathbf{r}, is part of the Earth to work out an equation for the mass of the sphere. (Use the symbols M_{E} and m_{s} for the mass of the Earth and sphere, respectively.)
c. Use the mass of the small sphere from part b to work out an equation for the gravitational force, $\mathbf{F}_{G^{\prime}}$ that the small sphere of radius \mathbf{r} exerts on you (your mass is m). Is \mathbf{F}_{G} proportional to \mathbf{r} ?

Hint: Think about which quantities in your equation are variables and which are constants.

Sharpen your pencil
 Solution

Your job is to work out whether you move through the Earth with simple harmonic motion. For it to be simple harmonic motion, the force on you must be proportional to your displacement from the equilibrium position in the center of the Earth.

So is the net force on you proportional to \mathbf{r} or not?

Ready Bake Equation

Volume of a sphere:

$$
V=\frac{4}{3} \pi r^{3}
$$

a. Use the ready bake equation for the volume of a sphere to write down equations for V_{E}, the volume of the Earth, and V_{s}, the volume of the sphere inside the Earth, radius \mathbf{r}. (Use the symbol \mathbf{R}_{E} for the radius of the Earth.)

$$
\begin{aligned}
& \text { Volume of Earth: } V_{E}=\frac{4}{3} \pi R_{E}^{3} \\
& \text { Volume of sphere: } V_{s}=\frac{4}{3} \pi r^{3}
\end{aligned}
$$

b. Use the fact that the small sphere, radius \mathbf{r}, is part of the Earth to work out an equation for the mass of the sphere. (Use the symbols M_{E} and m_{s} for the mass of the Earth and sphere respectively.)

Mass is proportional to volume.

$$
\begin{aligned}
\frac{m_{s}}{V_{s}} & =\frac{M_{E}}{V_{E}} \Rightarrow m_{s}=\frac{M_{E} V_{s}}{V_{E}} \\
\Rightarrow \quad m_{s} & =\frac{M_{E} \cdot \frac{4}{3}\left\langle r^{3}\right.}{\frac{4}{3}<R_{E}^{3}}=\frac{M_{E} r^{3}}{R_{E}^{3}}
\end{aligned}
$$

c. Use the mass of the small sphere from part b to work out an equation for the gravitational force, \mathbf{F}_{G}, that the small sphere of radius \mathbf{r} exerts on you (you have mass m). Is \mathbf{F}_{G} proportional to \mathbf{r} ?

$$
\begin{aligned}
& F_{G}=-\frac{G m_{s} m}{r^{2}}=-\frac{G M_{E} r_{m}^{3}}{R_{E}^{3} y^{2}}=-\frac{G M_{E} r m}{R_{E}^{3}}=-\frac{G M_{E}^{m} r}{R_{E}^{3}} \\
& \text { But } G, M_{E^{\prime}} R_{E} \text { and } m \text { are all constants, so } F_{G}=- \text { constant } \times r
\end{aligned}
$$

F_{G} is directly proportional to r and in the opposite direction.
So it's simple harmonic motion.

There are a lot of letters multiplying or dividing the ' r ', but they're all constants. So the entire circle thing is a constant.

The force is proportional to the displacement, so your trip is SHM

You just worked out that \mathbf{F}_{G}, the force from the sphere, is proportional to \mathbf{r}, your displacement from the center of the Earth. As \mathbf{F}_{G} always points towards the equilibrium position in the center, your trip through the Earth is definitely simple harmonic motion!

Simple Harmonic Motion

Period

Displacement

Force

Now you can use what you already know about simple harmonic motion to fill in some of the details. The period of the SHM is the time it takes you to go through the Earth and back again.

Alex also wants to know your average speed - which you can calculate as well ...
 Period
 on the next
 page

Simple harmonic motion can be described using the equation $\mathbf{a}=-\omega^{2} \mathbf{x}$, where the symbols have their usual meanings.
a. Use Newton's 2nd Law to rewrite your equation for the force you experience as you pass through the Earth in terms of a instead of \mathbf{F}_{G}. Hence compare your equation with the $\mathbf{a}=-\omega^{2} \mathbf{x}$ form, and rearrange to give an expression for ω.

$$
F_{G}=-\frac{G M_{E}^{m r}}{R_{E}^{3}} \zeta
$$

This is the equation you worked out on the previous page.
b. The mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$, the radius of the Earth is $6.38 \times 10^{6} \mathrm{~m}$, and G , the gravitational constant, is $6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg}$. s^{2}. Calculate the time (in minutes and seconds) that it would take for you to return to your starting point after stepping into a tunnel that goes through the center of the Earth. Does this take you less than 45 minutes? $<$ The time that Alex takes to arrive with your pizza.
c. What is your average speed during your trip through the Earth? What is your average velocity?

Question Clinic: The "Equation you've never seen before" Question

Sometimes, a question will present you with an equation you've never ever seen before. But don't just assume you can't do it just because it's unfamiliar. Answering a question like this is sometimes a case of combining the equation you're given with another you already know so that you can solve a problem. And sometimes it's a case of interpreting some other new information you're given in the question as well.

If the equation is unfamiliar, don't panic! Write it down and annotate it with what each symbol represents.

Make sure you look up any symbols you're not familiar with. In an exam, you'll have an equation sheet you can use. Also remember that the same quantity (e.g., displacement) may be represented by more than one symbol $(r, x, \ldots$ etc)
4. Simple harmonic motion can be described using the equation $a=-\omega^{2} x$, where the symbols have their usual meanings.
a. Rewnite your equation for the force you experience as you pass through the Earth using this form, and rearrange it to give an

This indicates that you'll need to use an answer from an earlier part of the problem.

This jargon means you'll have to do substituting and rearranging. If you found part a difficult, look at part b. It gives you some hints about some values you're expected to have in your part a answer. You might be able to work backwards!
b. The mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$ and the radius of the

Farth is $6.38 \times 10^{\circ} \mathrm{m}$. Calculate the time (in minutes and
stepping into a tunnel that goes through the center of the Earth.
c. What is your average speed during your trip through the Earth? And what is your average velocity?

Make sure you use the correct units

> Note the difference between speed (which involves distance) and velocity $\begin{aligned} & \text { Make sure you correct start and end } \\ & \text { points when you do the calculation. }\end{aligned}$ (which involves displacement).

In this exam version of the question, the value for G isn't given. You'd be expected to look it up in your table of information.

In a question like this, you need to be especially clear about what each variable represents. There are several different letters that are conventionally used to represent length in physics equations depending on the context $-x$ (displacement), r (radius), I (length), and h (height). When you look at equations, think about what each variable means, as you may be able to make a substitution that isn't immediately obvious.

Sharpen your pencil
 Solution

Simple harmonic motion can be described using the equation $\boldsymbol{a}=-\omega^{2} \mathbf{x}$, where the symbols have their usual meanings.
a. Use Newton's 2 nd Law to rewrite your equation for the force you experience as you pass through the Earth in terms of \mathbf{a} instead of \mathbf{F}_{G}. Hence compare your equation with the $\mathbf{a}=-\omega^{2} \mathbf{x}$ form, and rearrange to give an expression for ω.
l've been using r as displacement from equilibrium, this equation uses x. I'll continue to use r to be consistent.

$$
F_{G}=-\frac{G M_{E} r m}{R_{E}^{3}} \text { and } F_{G}=m a \Rightarrow m a=-\frac{G M_{E} r m}{R_{E}^{3}}
$$

This is of the form: $a=-\omega^{2} r$ except that $\omega^{2}=\frac{G M_{E}}{R_{E}^{3}} \Rightarrow \omega=\sqrt{\frac{G M_{E}}{R_{E}^{3}}}$

This is the equation you worked out on the previous page.

$$
F_{G}=-\frac{G M_{E} r m}{R_{E}^{3}} \zeta
$$

b. The mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$, the radius of the Earth is $6.38 \times 10^{6} \mathrm{~m}$ and G , the gravitational constant, is $6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} . \mathrm{s}^{2}$. Calculate the time (in minutes and seconds) that it would take for you to return to your starting point after stepping into a tunnel that goes through the center of the Earth. Does this take you less than 45 minutes?
Time it takes is equal to the period, T. Need to get from ω to T.
$\omega=2 \pi f$ and $f=\frac{1}{T} \Rightarrow \omega=\frac{2 \pi}{T}$
$\Rightarrow T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{\frac{G M_{E}}{R_{E}^{3}}}}=\frac{2 \times \pi}{\sqrt{\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{\left(6.38 \times 10^{6}\right)^{3}}}}=5070 \mathrm{~s}(3 \mathrm{sd})$
Need time in minutes and seconds. $5070 \mathrm{~s}=5070 \$ \times \frac{1 \mathrm{~min}}{60}=84.5 \mathrm{~min}=84 \mathrm{~min} 30 \mathrm{~s}$.
This is more than 45 minutes, so Alex gets there first.
c. What is your average speed during your trip through the Earth? What is your average velocity?

You know your average speed - but what's your top speed?

You just used what you know about simple harmonic motion to work out that your round-trip time is 84 mins 30 s , and your average speed on your trip through the Earth is over 5 km per second!

Even though you won't beat Alex to your house, he is really impressed and wants to know what your maximum speed is.

A mass on a spring moves with SHM. When you worked out the maximum speed of a mass on a spring, you used energy conservation. But working out the potential energy of an object inside the Earth is going to be tough ...

Joe: Not necessarily - there's something I've been thinking about for the last few pages. When we said, "What's it like?" right at the start, I said I thought it looked like circular motion from side on.

Frank: Oh yeah. Circular motion from side on and simple harmonic motion both use the same type of equations.

Jim: How does that help us?
Joe: I was thinking that if we looked at an orbit from side on, it might look like the trip through the Earth and back. We know how to calculate the velocity of an object that's in orbit around the Earth. That velocity will be the same as the maximum velocity when you look at the orbit from side on.

Joe: Yeah, I was thinking that the amplitude of an orbit just over the Earth's surface and the amplitude of the trip through the Earth would be the same.

Frank: But what if the orbit and the simple harmonic motion don't have the same period?

Jim: We know how to calculate the period of an orbit as well. If the orbit and the SHM have the same period as well as the same amplitude, then they must look identical from side on...

Circular motion from side on looks like simple harmonic motion

If you could orbit the Earth close to its surface, you'd follow a circular path. When you look at an circular
motion from side on, you only observe one component of the displacement, velocity and acceleration.

Circular motion from side on and simple harmonic motion both use the same type of equation, so their graphs are the same shape.

Component

Trigonometry

Displacement

$$
\begin{aligned}
& \text { The SHM and the orbit both } \\
& \text { have the same AMPLITUDE } \\
& \text { the radius of the Earth. }
\end{aligned}
$$

Here, you're on the other side of the Earth.

This is the period of the SHM.

There's often more than one way of looking at a problem.

If the circular orbit has the same amplitude and the same period as the simple harmonic motion trip through the Earth, then the two journeys will look identical from side on.

This means that the maximum speed of the trip through the Earth will be the same as the linear speed of the orbit (as long as the periods are the same). And you can already calculate the linear speed of an orbit...

We drew the displacement-time graph up there, but the two velocity-time graphs would also be identical.

there are no Dumb Questions

Q: But surely an orbit at the surface of the Earth wouldn't work because of air resistance?

A:: That's absolutely right ... but then again, we made some assumptions about oscillating to and fro through the center of the Earth already! Originally, we said that we'd ignore air resistance (which would slow you down) and the Earth's rotation (which would make you hit the sides of the tunnel) - so we can safely ignore them both for the orbit as well!

Q:But how do you know that the period of the orbit and the period of the SHM are the same? They might be different even though the amplitudes are the same.

A :: That's right - we don't know that the periods are the same ... yet. But as you've dealt with orbits before, you'll be able to work out whether they are soon enough ...

Hint: Think about what the centripetal force is provided by. You can use your equation appendix, if you like!

Sharpen your pencil

If the orbit has the same period as the SHM, then they look identical from side on.
a. Calculate the period of a circular orbit at the Earth's surface. (The mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$, and its radius is $6.38 \times 10^{6} \mathrm{~m}$.) How does this compare to the period of SHM through the center of the Earth?
b. What is the maximum velocity of something (or someone) falling through the Earth?

Sharpen your pencil Solution

If the orbit has the same period as the SHM, then they look identical from side on.
a. Calculate the period of a circular orbit at the Earth's surface. (The mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$, and its radius is $6.38 \times 10^{6} \mathrm{~m}$.) How does this compare to the period of SHM through the center of the Earth?

$$
\begin{aligned}
F_{c}=\operatorname{pr} \omega \omega^{2} & =\frac{G M_{E} \varphi}{r^{2}} \\
\omega & =\sqrt{\frac{G M_{E}}{R^{3}}}
\end{aligned}
$$

$$
\omega=2 \pi f \quad \text { and } \quad f=\frac{1}{T} \Rightarrow \omega=\frac{2 \pi}{T}
$$

$$
\Rightarrow T=\frac{2 \pi}{\omega}=\frac{2 \pi}{\sqrt{\frac{G M_{E}}{R_{E}^{3}}}}
$$

$$
=\frac{2 \times \pi}{\sqrt{\frac{6.67 \times 10^{-11} \times 5.97 \times 10^{24}}{\left(6.38 \times 10^{6}\right)^{3}}}}
$$

$$
T=5070 \mathrm{~s}(3 \mathrm{sd})
$$

This is the same period as you oscillating through the center of the Earth.
b. What is the maximum velocity of something (or someone) falling through the Earth?
Maximum velocity is same as velocity of circular motion.
$v=r \omega$ and $\omega=\frac{2 \pi}{T}$
$v=\frac{2 \pi r}{T}=\frac{2 \times \pi \times 6.38 \times 10^{6}}{5070}$
$v=7900 \mathrm{~m} / \mathrm{s}(3 \mathrm{sd})$

Your top speed is a blistering pace of just under 8 km per SECOND!

As long as you send your Break Neck Pizza order when you pop out on the other side of the world (with 42 min and 15 s still to go), you arrive home just before Alex does!

You can do (just about) anything!

You've finished your trip through the Earth - and your trip through this book. You've learned how physics works in the real world and absorbed problem solving strategies that you can use (just about) anywhere.

Think like a physicist!

appendix i: leftovers

 The top 6 things sthat we didn't cover before, but are covering now)

No book can ever tell you everything about everything.

We've covered a lot of ground, and given you some great thinking skills and physics knowledge that will help you in the future, whether you're taking an exam or are just curious about how the world works. We had to make some really tough choices about what to include and what to leave out. Here are some topics that we didn't look at as we went along, but are still important and useful.

\#] Equation of a straight line graph, $y=m x+c$

In chapter 20, you learned to compare the equation for a specific case of simple harmonic motion (for example, a mass on a spring or a simple pendulum) with a standard equation for simple harmonic motion, $\mathbf{x}=\mathbf{A} \cos (\omega t)$.
When you line up your SHM equation with this standard equation, you can use it to work out the amplitude and angular frequency of your system.

There's an even more fundamental equation you can do this with - the standard equation for a straight line. This is given by $y=m x+c$, which you can plot on a graph of y vs x.

When $\mathrm{x}=0$, the equation $y=m x+c$ becomes $y=0+c$, which is just $y=c$.
Therefore, c is the intercept - the value of y when $x=0$.
If you increase the value of x by 1 , then value of y increases by m, because of the $y=m x$ part of the equation. This means that the slope of the graph $=m$.

Every equation for a straight line graph follows this pattern, or form. It means that if you work out which variable to plot on which axis, you can work out the values of the other variables in your equation from the slope and the intercept.

Equation	Vertical axis	Horizontal axis	Slope	Intercept
$\mathbf{y = m x + c}$	y	x	m	c
$\mathrm{x}=\mathrm{x}_{0}+\mathrm{vt}$	x	t	v	x_{0}
$\mathrm{v}=\mathrm{v}_{0}+\mathrm{at}$	v	t	a	v_{0}

Plot a graph of v against t and calculate the
acceleration from the slope of the graph.

Line up the variables in your equation with the variables in the standard equation so that you keep track of which is which.

You can turn ANY equation into a

 straight line graph and measure its slopeSuppose you're doing an experiment to calculate the acceleration of a block down a slope (perhaps to eventually work out the coefficient of friction).

You'd expect your graph of displacement vs time to be of the form $\mathbf{x}=\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2}$.

If you set things up so that $\mathbf{x}_{0}=0$ and $\mathbf{v}_{0}=0$, the equation becomes $\mathbf{x}=0+0+1 / 2 \mathbf{a} t^{2}$, or just $\mathbf{x}=1 / 2 \mathbf{a} t^{2}$ You know from experience that $\mathbf{x}=1 / 2 \mathbf{a} t^{2}$ will produce a curved graph... so what does it have to do with $y=m x+c$, which is the equation for a straight line graph?

Equation	Vertical axis	Horizontal axis	Slope	Intercept
$y=m x+c$	y	x	m	c
$x=1 / 2 \mathrm{at}^{2}$	x	t^{2}	$1 / 2 \mathrm{a}$	$0<$

If you work out the value of t^{2} for each of your data points and plot t^{2} along the horizontal axis and \mathbf{x} along the vertical axis, you'll end up with a straight line graph with a slope of $1 / 2 \mathbf{a}$. Draw the graph, measure the slope, and you get the value for \mathbf{a}, which is what you want!

Another way of thinking about it is to say "Let $z=t^{22}$ " and substitute that in to your equation $\mathbf{x}=1 / 2 \mathbf{a} t^{2}$. You then have the equation $\mathbf{x}=1 / 2 \mathbf{a} z$. So if you plot a graph with \mathbf{x} on the vertical axis and z on the horizontal axis, the slope of the graph will be $1 / 2 \mathbf{a}$.

If you already know the form of the equation you expect your experimental results to take, this can be a very powerful tool.

x

\#2 Displacement is the area under the velocity-time graph

You've already learned that the work done is the area under the force-displacement graph, and used this several times to calculate energy transfer.

This is possible because the quantity of work done $=F \Delta x$. This equation has the same form as the equation for the area of a rectangle: area $=$ height \times width. If you have a rectangle on a graph where the height is F and the width is Δx, then the area of the rectangle will be equal to the work done.

If you have any equation of the form $A=b c$, then A will be the area under a graph of b plotted against c.

This even works for graphs that aren't rectangles. For any shape of graph, you could theoretically split up the area between the graph and the horizontal axis into lots and lots of tiny rectangles. Then you can add up the areas of the rectangles - to get the total area under the graph, and the total displacement.

You can think of this triangle as being made up of lots of tiny rectangles, each like the large rectangle in the picture above.

The most common example of this kind of graph is a velocity-time graph.

This is because $\mathbf{v}=\frac{\Delta \mathbf{x}}{\Delta t}$, and so $\Delta \mathbf{x}=\mathbf{v} \Delta t$. Therefore, if you plot a graph of \mathbf{v} against t, the area under the graph will be equal to $\Delta \mathbf{x}$

If $A=b c$ then A will be

 the area under a graph of b plotted againt c.> For example, $\mathrm{x}=\mathrm{vt}$, so x is the area under a v-t graph.

Yes - if the velocity is negative, the displacement is changing in the opposite direction.

The area between the velocity-time graph and the x -axis tells you the total displacement so far. If the velocity has only ever been positive, the total displacement must also be positive.

However, if the velocity later becomes negative, the object must be retracing its steps and traveling in the opposite direction. This corresponds to the velocity-time graph being below the horizontal axis, and a change of displacement in the negative direction.

If there are equal areas above and below the horizontal axis of the
 velocity-time graph, the net displacement must be zero.

Area above horizontal

 axis is positive displacement.
Area below

horizontal axis
is negative displacement.

Graph of displacement vs. time for an Displacement object which goes up then down again

\#3 Torque on a bridge

We've previously defined torque as a "turning force." When you identify a fulcrum, torque is defined as the displacement from the fulcrum a force is applied at \times the component of the force perpendicular to the lever, $\boldsymbol{\tau}=\mathbf{r} \mathbf{F}_{\perp}$

Torque is a vector - you define clockwise as positive and counter-clockwise as negative.

> In any problem that asks you about forces, look to see if all the forces act through the center of the object. If they don't, then a TORQUE must be present.

In some problems, you're asked to calculate the force that a pillar or string exerts on a bridge to support it. For example:
"Imhotep, mass 80 kg , is standing 5.0 m from the end of a bridge that's 20.0 m wide and has a mass of 200 kg . The bridge is horizontal and in equilibrium What force will the support at the far end of the bridge exert on the bridge?"

The key to solving a problem like this is recognizing that it's actually about torque

The key question in working this out is to ask yourself: "if the pillar wasn't there, where would the fulcrum be?

In this case, the bridge would rotate around the pillar that supports it at the other end. So the force that our pillar provides must provide a torque that makes the total torque on the bridge around the fulcrum add to zero.

As well as the torque provided by our pillar, we need to think about the torque from Imhotep and the torque from the bridge itself. The second key is realizing that the bridge acts like all its mass is concentrated in the center. Even if Imhotep was invisible, there would still be a torque.

Call clockwise the positive direction:
If this pillar wasn't here, the fulcrum would be at the other pillar.

$$
\begin{aligned}
& \mathbf{r}_{1} \mathbf{F}_{1}+\mathbf{r}_{2} \mathbf{F}_{2}-\mathbf{r}_{3} \mathbf{F}=0 \\
& \mathbf{F}=\frac{\mathbf{r}_{1} \mathbf{F}_{1}+\mathbf{r}_{2} \mathbf{F}_{2}}{\mathbf{r}_{3}} \\
& \mathbf{F}=\frac{5.0 \times 80 \times 9.8+10.0 \times 200 \times 9.8}{20.0} \\
& \mathbf{F}=\underline{=1176 \mathrm{~N}}
\end{aligned}
$$

> If you want to know the force that a pillar (or string) exerts on a bridge, ask yourself "where would the FULCRUM be if that pillar (or string) wasn't there?"

\#4 Power

Power is the rate at which you do work, and is measured in Joules per second. Sometimes you're asked to calculate the time it takes a machine with a certain power to transfer a certain amount of energy.

So for example, a 1.0 kW engine produces 1.0 kJ per second, and would do a job requiring 10 kJ of energy transfer in 10 seconds.

There's also another equation you can use as a shortcut, which involves the velocity that the object you're doing work on moves at:

$$
p_{\text {over }}=\mathbf{F v}_{\mathbf{v}}
$$

As you master more and more physics, you start to

\#5 Lots of practice questions

This book is fundamentally a learning book, not a textbook or a question bank. The questions and exercises have been carefully chosen to help you grasp the physics concepts you're learning about.
This is because to fully understand physics, you need to do physics, not just read about it. You need to be able to use the concepts to do calculations as well being able to explain them.

You can't get good at tennis just by reading a book about it - and in a similar way, you need to practice lots of exercises, problems and questions to get good at physics.

Do as many practice questions as you can especially using past exam papers from your course.

\#6 Exam tips

Although not everyone reading this book will be studying for an exam, a lot of people probably will be! We've based the content of this book on the mechanics and experimental parts of the AP Physics B course (an American College course). The syllabus is also largely the same as the mechanics content of an English A-Level exam (also taken internationally). But these exam tips apply right across the board!

> Arrive at your exam fresh so that you're ready to be inventive and solve problems. Trying to cram tires out the creative parts of your brain.

BULLET POINTS

- Find a procrastination-free place to work. If necessary, hide your internet cable or wireless card!
- Remember that different people structure their work in different ways. Some are happier with a timetable written out in advance, and some with writing down what they have revised and how long they spent on it as they go along.
- Don't be psyched out by what other people on your course claim they are or aren't doing. Just get on with what you're doing.
- Start off with a mixture of reading through your notes or this book to make sure you understand the concepts, while doing (or redoing) exercises from the book.
- Read through your homework from each section of your course to remind yourself of how you did problems before. If you've forgotten how to do any, redo them to remind yourself of the method.
- Get a good stock of previous exam questions. Once you've been through your notes and your homework, do all the questions in two or three papers "open book" (referring to your notes when you need them), then do all the questions in the most recent paper or two without using your notes. Do as many past papers as is physically possible!
- In the exam, find out whether you are allowed a calculator in advance, and make sure you have spare batteries. Download or photocopy the equation table you'll have in your exam, and make sure you use it when doing past papers.
- Get a good night's sleep and don't cram - physics exams test how you can think on your feet, not what you have learned by rote.
- Read the question. Underline the important parts. Read the question again. You get zero credit for answering a question you've not been asked!
- Start with a sketch, and by asking yourself what it's LIKE.
- Try to give an explanation of what you're doing at each stage of the problem. This helps you get things straight in your head - and helps your examiner give you points for showing that you understand.
- Show your work! A numerical answer with no work usually only scores half points even if it's correct.
- Never cross anything out. If you change your mind part-way through, only cross out your first answer when you've completed your second.
- If you have a multiple choice exam, find out if it is negatively marked. In the AP Physics B multiple choice paper, you lose quarter of a mark for every question you get wrong. So if you can reduce the possibilities to two or three answers, it's worth taking a guess. But not if you're guessing between four or five answers.

appendix ii: equation table

Point of Reference

It's difficult to remember something when you've only seen it once.
Equations are a major way of describing what's going on in physics. Every time you use equations to help solve a problem, you naturally start to become familiar with them without the need to spend time doing rote memorization. But before you get to that stage, it's good to have a place you can look up the equation you want to use. That's what this equation table appendix is for - it's a point of reference that you can turn to at any time.

Mechanics equation table

Equations of motion

"No displacement"
"No final velocity"
"No time"

$$
\begin{aligned}
\mathbf{v} & =\mathbf{v}_{0}+\mathbf{a} t \\
\mathbf{x} & =\mathbf{x}_{0}+\mathbf{v}_{0} t+1 / 2 \mathbf{a} t^{2} \\
\mathbf{v}^{2} & =\mathbf{v}_{0}{ }^{2}+2 \mathbf{a}\left(\mathbf{x}-\mathbf{x}_{0}\right)
\end{aligned}
$$

If the force varies with time, you need to use the area under the force-time graph on the left hand side of the equation.

Forces

Momentum

$$
\mathbf{p}=m \mathbf{v}
$$

Newton's 2nd Law -
momentum version
$\left(\mathbf{F}_{\text {net }} \Delta t\right.$ is also called impulse)

$$
\mathbf{F}_{\text {net }} \Delta t=\Delta \mathbf{p}
$$

Newton's 2nd Law acceleration version Friction

Torque
τ is perpendicular to r and F_{\perp}. Clockwise is positive, counterclockwise is negative.

$$
\mathbf{F}_{\text {net }}=m \mathbf{a}
$$

$$
F_{\text {fric }}=\mu F_{\mathrm{N}}
$$

$$
\boldsymbol{\tau}=\mathbf{r} \mathbf{F}_{\perp}
$$

This is a scalar equation Even though $F_{\text {fric }}$ and F_{N} are perpendicular, the direction of F depends on the direction an object is being moved in, not on F_{N}.

Circular Motion

Period and frequency
Angular frequency
(aka angular speed or size of angular velocity)
Linear and angular distance

$$
x=r \theta)
$$

Linear and angular velocity
Centripetal acceleration
(using angluar frequency)
These equations also work for simple harmonic motion.

$$
v=r \omega\}
$$

$$
a_{\mathrm{c}}=r \omega^{2}
$$

Centripetal acceleration (using linear speed)

$$
a_{\mathrm{c}}=\frac{v^{2}}{r}
$$

$$
\left.\begin{array}{l}
T=\frac{1}{f} \\
\omega=2 \pi f
\end{array}\right\}
$$

In simple harmonic motion these give you the maximum values of x and v.

Gravitation

Gravitational force
between two spheres Gravitational potential between two spheres

Although this is a scalar equation, it is useful to put in the minus sign to remember that F and r are in opposite directions.

$$
\begin{aligned}
& F_{\mathrm{G}}=-\frac{G m_{1} m_{2}}{r^{2}} \\
& U_{\mathrm{G}}=-\frac{G m_{1} m_{2}}{r}
\end{aligned}
$$

There's a minus sign in this equation because u_{6} is defined as zero when r is infinite.

Work and energy

Work done on a system
Gravitational potential energy
Kinetic energy
Average power
Power used to do work on a system

Power is the rate at which work is done.

These are all scalar equations because when you multiply a vector by a vector parallel to it, the result is a scalar.

Simple Harmonic Motion

Force and spring constant	$\mathbf{F}_{\mathrm{s}}=-k \mathbf{x v}$
Elastic potential energy of a spring	$U_{\mathrm{s}}=1 / 2 \mathbf{k} \mathbf{x}^{2}$
Standard SHM equations take one of these forms for \mathbf{x},	$\mathbf{x}=\mathbf{x}_{0} \sin (\omega t)$
\mathbf{v} and \mathbf{a} (depending on ititial	
conditions)	

Constants

Acceleration due to gravity near the Earth's surface

Gravitational constant Speed of light

Also called gravitational field strength.

$$
\mathbf{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
G=6.67 \times 10^{-11} \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~s}^{2}
$$

$$
c=3.00 \times 10^{8} \mathrm{~m} / \mathrm{s}
$$

(Other useful values, such as the radius of the Earth and

 the mass of the Earth, are given in some equation tables but not others. The AP Physice B table omits them.
Geometry

Area of a rectangle	$A=$ base \times height
Area of a triangle	$A=1 / 2 \times$ base \times height
Circumference of a circle	$C=2 \pi r$
Area of a circle	$A=\pi r^{2}$
Surface area of a sphere	$S=4 \pi r^{2}$
Volume of a sphere	$V=\frac{4}{3} \pi r^{3}$
Volume of a prism (3D shape with same shape of base and	$V=$ area of base \times height

If you have a 3D shape, try "unrolling" or
"unfolding" it flat to see which 2D shapes it's constructed from.

Trigonometry

$$
\begin{array}{rlrl}
\begin{aligned}
r \text { always } \\
\text { means rading. }
\end{aligned} & \begin{aligned}
\text { Pythagoras } & \text { hyp }^{2}
\end{aligned}=\text { opp }^{2}+\text { adj }^{2} \\
\text { Sine } & \sin (\theta) & =\frac{\text { opp }}{\text { hyp }}
\end{array}
$$

The extended definitions of sine, cosine and
tangent for angles greater than 90° aren't given in the AP Physics B equation table.

These are all "base" SI units - you can rewrite the other units in this table in terms of them. For example, $F=$ ma, so in base units, force has units of $\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
$\left.\begin{array}{lll}\text { Units } & & \\ \text { Length } & \text { meter } & \mathrm{m} \\ \text { Mass } & \text { kilogram } & \mathrm{kg} \\ \text { Time } & \text { second } & \mathrm{s}\end{array}\right\}$

Prefixes

10^{9}	giga	G	10^{-3}	milli	m
10^{6}	mega	M	10^{-6}	micro	μ
10^{3}	kilo	k	10^{-9}	nano	n
10^{-2}	centi	c	10^{-12}	pico	p

Letters used in equations

Distance	x, r, l
Displacement	$\mathbf{x , ~} \quad$ r always
Velocity	\mathbf{v} means radius.
Acceleration	$\mathbf{a} \longleftarrow$ Bold means a
Time	$t \quad$ vector quantity.
Mass	$m<$.
Momentum	\mathbf{p} scalar quantity.
Force	$\mathbf{F}<$
Torque	τ If an equation
Work	contains a variable that is
Potential energy	U usually a vector
Kinetic energy	$K \quad$ but is written in
Power	P italics, then you
Period	T of the variable in
Frequency	f the equation.
Angle	θ
Angular frequency	ω
Spring constant	k

Index

Symbols

π 637-638
fractions of 648

A

acceleration 187, 210-211, 226, 841
centripetal 680-682
constant (see constant acceleration)
defined 191
due to gravity 231-232, 236, 286-287, 728-729
at the Earth's surface 737
graphing 293-294
impulse 502
net force 447
opposite direction of 288-289
perpendicular 461, 698
support force 453
trajectories 369
units of 227-228
weight 447
(see also slope, velocity-time graph)
acceleration-time graphs 805-806
amplitude 786, 810, 857-858
defined 795
elastic potential energy 820
frequency of SHM 814
angles 168, 187
direction 169
measuring 170,646
angular frequency 651-652, 661, 680
defined 661
equation 807
angular speed 657, 680
equation 807
angular velocity
centripetal acceleration 680
defined 713
answers and significant digits 50
approximations 10
area 72, 91
converting units of volume 84-87
defined 91
arrows 157
assumptions 10
average $104,106,110$
graphs 116
of inaccurate results 113
speed 140
average velocity 213, 245-247
constant acceleration 252
equation 246

B

balance point of ruler 523-524
banked curve 711
bias 106
blueprints
conversion factor 33-35
units 22
bobsledding example 560-580, 694-714
banked curve 711
centripetal force 696
force acting towards center of circle 707
horizontal centripetal force 699
loop-the-loop 703-710
how fast 708-710
normal force 697
perpendicular acceleration 698
bobsledding example (continued)
tension force 704
vertical circle 712
breaking down problems 170, 845
Break Neck Pizza example 96-148
Bullet Points
angular frequency 652, 658
angular speed 658
circumference 652
cosine 385
design an experiment question 201
displacement 163
distance 163
energy conservation 626
equipment 201
free body diagram 512
Hertz (Hz) 652
impulse 512
negative numbers 302
pendulum 833
Pythagoras' Theorem 347, 385
radians 652
right-angled triangles 347
rotational equilibrium 534
scalars 163
similar triangles 385
simple harmonic motion 833
sine 385
sketching 302
springs 833
surface area or volume 725
tangent 385
torque 534
vectors 163
buzzwords 194-195

C

calculations 79-80
with large and small numbers 76
calculators
cosine 360
playing with 362
power button 61
scientific notation 63
sine 360
tangent 360
trigonometric inverse functions 360
understanding answers 62
cannonball example 391-436
calculating range 430-433
lab experiment 410-412
large objects and velocity 402
mass 400
inertia 404-407
maximum range 395-398
Newton's 1st Law 403
Newton's 3rd Law 423
recoil velocity $409,424,427$
stone cannonball 400
stone versus iron cannonball 428
symmetry 398
(see also castle defense system example, cannon, firing)
castle defense system example 336-390
cannon, firing 348-390
firing angle 351
trajectories (see trajectories) trigonometric functions 363
moat, building 339-346
scale drawing 342
centrifugal force 677
centripetal acceleration 680-682
centripetal force 674
bobsledding example 696
defined 713
disappearing 678
equating with gravitational force 754-758
free body diagram 693
horizontal 699
what affects size of 679
cheese globe example 716-725
circular motion 632-662, 664-714
angular frequency 651-652, 680
angular speed 680
centripetal acceleration 680-682
centripetal force 674, 692
disappearing 678
free body diagram 693
velocity vector 684
what affects size of 679
circumference 634-636
contact force 668-673
degrees and radians 653
force acting towards center of circle 707
free body diagram 667-668
freefall 665-666
gravitational attraction 665
Hertz (Hz) 641-642
linear distance, converting to revolutions 639-640
linear speed, converting to angular frequency 654-658
normal force 697, 704
perimeter of a circle 634
perpendicular acceleration 698
radians 646-648
radius 633-634
revolutions 633-634
fraction of 649
tension force 704
units 644-648
circumference 634-636, 661
defined 661
π 637-638
coefficient of friction 488
colliding objects
elastic collisions 587-597
inelastic collision 588, 596-597
momentum conservation 476-477
communicating principles 128
component 388
component vectors 480-483
constant acceleration 728
average velocity 252
defined 235
equations 286, 318
constant velocity 236, 245, 403
slope of velocity-time graph 226
contact force 454-456, 668
conversion factor 29-31
changing units 34
fraction 30
updating blueprint 33-35
cosine 354
graphs 796
new definition 779-781, 784
oscillations 810
relationship with sine 785
SOH CAH TOA mnemonic 357
cubic meters 71
curved line, point on 218

D

decimal places, versus significant digits $40-41$
definitions (see glossary)
degrees 168
radians and 653
working with 648
designing experiments 194-199
devices, understanding how they work 441
digits, significant (see significant digits)
dimensions 84-87
Dingo and Emu example
ACME cage launcher 284-334
acceleration-time graph 293
displacement-time graph 295-296
launch velocity 321-324
ACME rocket-powered hovercraft 305-320
cage
calculating displacement 253-254
velocity-time graph 249
crane 204-236, 238-282
start and end points 241
direction 169, 190, 211
vectors 288-289
displacement 210-211
average velocity 245-247
calculating 253-254
defined 191
from equilibrium 801
horizontal 374
pendulum 831
proportional to force 853
using force to displace object 538-541
velocity 174,212
versus distance 155-156, 188
Displacement, Velocity, and Acceleration Up Close 211
displacement-time graph 248-249, 297, 790-792
slope 222-224, 295
working out displacement 234
working out velocity 217, 231
displacement vector 157, 769-774
right-angled triangles 774-778
x-component 783-784
distance $101,108,155,156,163,190$
defined 147
scalar 157
speed 174
total 140
versus displacement 155-156, 188
versus time 122
distance-time graph 120-124
slope 124
equals zero 138
duck-shooting competition example 762-796
displacement vector 769-774
right-angled triangles 774-778
x-component 783-784
two players 782
velocity from each player's view 789-793

E

Earth
being at center 12
calculating force on spaceship at any distance from 741
gravity 231-232, 235
mass 737
radius 737
treating as shell 845-850
treating as sphere 845
efficiency 553
elastic collisions 587-589, 592-594, 596-597
defined 600
elastic potential energy 575, 816
springs 820
electromagnet 198
energy
defined 556
internal (see internal energy)
energy conservation 559-602, 620-626
calculating velocity 569
complicated problems 579
defined 556
elastic potential energy 575
escape velocity 747-750
gravitational potential energy 575
height difference 545, 564
internal energy 574, 576, 596
kinetic energy (see kinetic energy)
law of nature 583
macroscopic scale 575
mechanical energy 575
versus kinetic energy 576
microscopic scale 575
momentum conservation 587-594
elastic collisions 592-594
momentum versus kinetic energy 580-581
potential energy 567-570
height difference 568
springs 816
stopping an object 571-574
distance required 582
torque and work 544-551
uniform slope 560, 563, 566
versus forces 570
work against friction 574
energy transfer 542-543, 573, 585
temperature difference 552
equations
angular frequency and angular speed 807
checking 300
constant acceleration 286, 318
defined 147
equal sign 100
factoring 590-591
frequency and period 807
general 307
graphs (see graphs)
grouping terms 315
kinetic energy 580
letters with subscripts 98
momentum-impulse 580
momentum conservation 421
parentheses 311-314
predictions 128
rearranging 126, 148
representing the real world 240
simplest form 310
size of frictional force experienced by object 488
slope 122
solving for two unknowns 587
speed 111, 122
symmetry 327-329
testing 251-252
time $=$ something $126-127$
variables 99
vectorizing 211
verifying that equations are correct 264-273
equations of motion 237-282, 283-334
acceleration-time graph 293
average velocity 245-247
constant acceleration 252
constant acceleration 252, 318
constant velocity 245
defined 333
displacement - time graph 248-249, 295
final velocity 243
general equations 259
grouping terms 315
GUT, checking equations 273
initial velocity 243
launching object straight up 297
parentheses 311-314
substitutions 256-263, 308
symmetry 327-329
testing equations 251-252
velocity 244
acceleration in opposite directions 288-289
velocity - time graph 241-242, 248-250
verifying that equations are correct 264-273
Equations Up Close
equal sign 100
term 100
equilibrium 530
errors $43,54,148$
rounding converted 44
zeros 52
escape velocity 726, 747-750
estimating scientific notation 70
experiments 108, 148
changing variables 414
designing 105, 194-199
setup 411
extrapolating 115,118
graphs 220-221
extremes 101, 102
F
factoring equations 590-591
falling 235
falling object 236

Fireside Chats

degrees and radians 653
energy and work go head to head 554-555
graph versus equation 144-145
normal number versus scientific notation 88-89
Five Minute Mystery
Honest Harry has a problem 277
Solved 278
Problems with a punchbag 627 Solved 628
The giant who came for breakfast 90 Solved 93
football (see SimFootball example)
force 841
centrifugal 677
centripetal (see centripetal force)
coefficient of 497
components that add to zero 848-849
contact (see contact force)
defined 435
frictional 487-490
gravitational 455, 845
exerted by a sphere 850
impulse 502
net (see net force)
normal (see normal force)
pairs (see Newton's 3rd Law pairs of forces)
perpendicular 458-460, 527
proportional to displacement 853
related to mass and velocity 411-417
relationship between force and mass 443-444
restoring 844
static equilibrium 528
stopping an object 571-574
support 449-450
using to displace object 538-541
vector angles 462
vectors 467
versus energy conservation 570
versus torque 526
working out problems 512
force-displacement graph 816, 818
potential energy 743
fractions 30-31
free body diagram $451,454,456,466,512,667-668$
centripetal force 693
defined 468
SimFootball example 491
freefall 665-666
free body diagram 667-668
frequency 661
angular 651-652
converting to linear speed 654-658
defined 661
Hertz (Hz) 641
period 807
simple harmonic motion 814
versus period 642
friction 403
coefficient of 488
defined 513
energy conservation 574
internal energy 551
kinetic 487
normal force 488
calculating 489
SimFootball example 484-492
static 487
torque and work 549-551
frictional force 487-490
calculating 497
dependencies 490
Friction Exposed 498
fulcrum, positioning 521-522
full revolution 168
G
Galileo's Law of Inertia 403
general equations 259
general physics principles 142
geostationary orbit 751
glossary
acceleration 191
amplitude 795
angular frequency 661
angular velocity 713
area 91
centripetal force 713
circumference 661
component 388
constant acceleration 235
displacement 191
distance 147
elastic collision 600
energy 556
energy conservation 556
equation 147
equations of motion 333
falling 235
force 435
free body diagram 468
frequency 661
friction 513
graph 147
gravitational field 759
impulse 513
inelastic collision 600
internal energy 600
inverse square law 759
kinetic energy 600
mass 435
mechanical energy 600
momentum conservation 435
Newton's Laws 435
normal force 468
pendulum 837
period 661
potential energy 556
power 600
pulley 629
Pythagoras 388
radians 661
radius 661
scalar 191
scientific notation 91
simple harmonic motion 837
slope 147
speed 147
spring 837
substitution 280
symmetry 333
tension 629
time 147
torque 556
trigonometry 388
units 53
vector 191
velocity 191
volume 91
weight 468
work 556
gradient 120
graph-drawing tips 116
graphing results 114
graphs
acceleration-time 805-806
acceleration versus time 293-294
amplitude 786
average speed 140
calculating slope 121
checking equations 300
cosine 796
defined 147
displacement-time (see displacement-time graph) distance 120
distance-time (see distance-time graph)
distance versus time 122
equations 114-115
estimates 118-119
extrapolating 220-221
force-displacement graph 743, 816, 818
line on 117-119
graphs (continued)
outlying points 119
plotting distance versus time 137-140
reducing random errors 116
representing the real world 240
sine 796
slopes (see slopes)
'something'-time 225
straight line 122
velocity-time (see velocity-time graph)
velocity versus time 293-294
Graph Up Close
average 115
extrapolating 115
interpolating 115
straight line 115
gravitational attraction 8, 665
gravitational constant 736
gravitational field 442, 443
defined 759
lines 731
moon's 506
strength 447, 731-732
gravitational force 447-448, 455, 729, 732, 845
between two masses 737
equating centripetal force with gravitational force 754-758
exerted by a sphere 850
gravitational potential energy 542-543, 565, 575
gravitation and orbits 715-760
acceleration due to gravity 728-729
amplitude of orbit 858
calculating force on spaceship at any distance from Earth 741
constant acceleration 728
equating centripetal force with gravitational force 754-758
escape velocity 726, 747-750
force-displacement graph 743
geostationary orbit 751
gravitational field lines 731
gravitational force between two masses 737
inverse square law 735, 739-741
light intensity 730-731
mass of the Earth 737
maximum gravitational potential energy 745
period of orbit 857-859
potential energy 744
radius of the Earth 737
spheres 719
radius 724
radius versus surface area 722
volume versus surface area 722
surface area of a sphere 720
$\mathrm{U}=0$ at infinity 745
gravity 7-12
acceleration due to 231-232, 236, 286-287, 728-729
cannon, firing 367
torque and work 549-551
trajectories 370-371
GUT, checking equations 273

H

heating 552
heavy objects, lifting (see torque and work)
height difference 545, 546, 564
potential energy 568
Hooke's Law 801, 838
hypotenuse 775

I

impulse 500-505
acceleration 502
defined 513
force 502
momentum 502
index 61
minus sign 69
powers of 10 , separating 81
scientific notation 70
inelastic collision 588, 596-597
defined 600
inertia 404
mass 404-407
instantaneous velocity 213, 233
slope 213
internal energy 574, 576, 596
defined 600
friction 551
temperature 550
interpolating 115
inverse square law 735, 739-741, 844
defined 759
J
Joules 541

K

Kentucky Hamster Derby example 632-662
kicking football 473-474, 500-505
kinetic energy 565-585
defined 600
equation 580
velocity 567,570
versus mechanical energy 576
versus momentum 580-581
kinetic friction 487

L

launching object straight up 297
length 25, 26, 82
letters with subscripts 98
lever 519-520
lifting heavy objects (see torque and work)
light
intensity 730-731
speed of 765
linear distance, converting to revolutions 639-640
linear speed
converting into Hertz 641-642
converting to angular frequency 654-658
line on graphs 117-119

M

macroscopic scale 575-576
mass 25, 26, 400, 442-443
calculating with momentum conservation 429
defined 435
Earth 737
gravitational force between two masses 737
inertia 404-407
large objects and velocity 402
on a spring 805-806
equation 809
total energy 819
proportional to volume 852
related to force and velocity 411-417
relationship between force and mass 443-444
maximum gravitational potential energy 745
measurements
discarding 110
inconsistent 110
that don't fit 110
mechanical energy 575
defined 600
versus kinetic energy 576
memorizing versus understanding 142
meters per second 175
microscopic scale 575-576
momentum 444-445
change in 422
change of 420
impulse 502
total 418, 421
versus kinetic energy 580-581
momentum-impulse equation 580
momentum conservation 391-436, 512, 587-594
as equation 421
colliding objects 476-477
defined 435
elastic collisions 592-594, 596-597
inelastic collisions 596-597
lab experiment 410-412
mass 429
inertia 404-407
maximum range 395-398
Newton's 1st Law 403
Newton's 3rd Law 422
recoil velocity 409
SimFootball example 475-476
symmetry 398
velocity 429
moon's gravitational field 506
multiple measurements 104-106
myPod example 18-54
converting units 34
significant digits 45-46

N

negative index 69
net force $447,465,845,849-850$
acceleration 447
calculating 844
Newton's 1st Law 403
Newton's Second Law 445
perpendicular force equal to zero 489
Newton's 1st Law 403, 484, 520, 670, 678
Newton's 2nd Law 444-447, 469
centripetal force 679
Newton's 3rd Law pairs of forces 453, 469
SimFootball example 476-477
Newton's Laws 512, 841
defined 435
No Dumb Questions
acceleration 182
due to gravity 232
acceleration-time graph 227, 297
adding two vectors 418
air resistance 859
angle 169
angular frequency and linear speed 656
average 119
bobsledding example 702, 708
calculator 81, 362
cannon vehicle 417
centripetal acceleration
centripetal force 675, 678
free body diagram 693
checking equations 267
coefficient of force 497
colliding objects 477
component vectors 483
constant velocity 403
contact force $456,668,670$
conversion factor 31
displacement 156, 159, 182
displacement-time graph 217, 297
distance 119, 156
Earth's mass 738
elastic collisions 593
energy conservation 546, 578, 593
equating centripetal force with gravitational force 757
equations 99
equilibrium 530
error 43
final velocity 243
force versus torque 526
free body diagram 456
freefall 668
frequency versus period 642
friction 486
frictional force 497
full rotation 169
Galileo's Law of Inertia 403
graph 119
gravitational field 732
gravitational field line 732
gravitational force 732
exerted by a sphere 850
gravity 12
height difference 546
impulse 505
inertia 404
initial velocity 243
internal energy 576, 598
inverse square law 735
kinetic energy 566
letters in the equation 99
lever 520
mass 417
of a spring 820
mechanical energy
versus kinetic energy 576
memorizing equations 319,329
momentum conservation $424,477,483,593,598$
momentum versus kinetic energy 582
net force 403
Newton's 1st law 403, 520, 670, 678
Newton's 2nd Law 447
Newton's 3rd Law 456, 477
normal force 460, 497
obviousness of problem 5
outlying points 119
period of orbit 859
period of SHM 859
potential energy 566
precision 113
prefixes 74
Pythagoras' Theorem 344
radians 648
random errors 113
right-angled triangles 346
rotational equilibrium 530
scalar 169
scales 453
scientific notation 66, 74, 81
seesaw 520
showing work 303
significant digits 51
similar triangles 432
simple harmonic motion 807
sine 781
sine wave 781
SI units 26
abbreviations 27
prefix 27
slope of the graph 125
springs 802
static equilibrium 530
substitutions 257-258
support force 453, 460
symmetry 399
tangent 219
tension force 610
torque 526
trigonometric functions 359
undulating slope 566
uniform slope 566
units and equations 267
vectors $159,169,178$
adding 163
in opposite directions 290
velocity 178,182
versus displacement 217
velocity-time graph 297
volume versus surface area 722
non-contact forces 455
normal force 458-461, 704
bobsledding example 697
calculating 489
defined 468
friction 488
perpendicular components 489
normal number versus scientific notation 88-89

0

orbits (see gravitation and orbits)
oscillations 762-796
amplitude 786, 810
angular frequency and angular speed 807
cosine 810
displacement-time graph 790-792
oscillations (continued)
displacement vector 769-774
right-angled triangles 774-778
x-component 783-784
force - displacement graph 818
frequency and period 807
frequency of SHM 814
Hooke's Law 801
mass on a spring 819
pendulum (see pendulum)
radians 771
right-angled triangle inside circle 775
simple harmonic motion 806
sine and cosine 779-781, 785
sine wave 781
sinusoids 805
springs (see springs)
velocity-time graph 790-792
velocity vector 793

P

pairs of forces (see Newton's 3rd Law)
parallel component 563
parallel force component 461-467
patterns 109
pendulum 827-834
defined 837
displacement 831
frequency dependencies 831
simple harmonic motion 830
perimeter of a circle 634
period 661
defined 661
of an orbit 857-859
of a wheel 641
of SHM 853
versus frequency 642
perpendicular
acceleration 461, 698
component of a force 527
components 462
force 458-460
force component 461-467
physicist, thinking like $1-16,839-862$
approximations 10
assumptions 10
being part of the problem 2-5
intuition 6
special points 6-12
what happens next? 11
physics terminology (see glossary)
Physics Toolbox
Acceleration due to gravity 236
A fundamental equation of motion 281
Angular frequency and angular speed 662
Another fundamental equation of motion 281
Be Part of It 16
Be visual! 16
Break down the problem into parts 630
Calculating friction 514
Calculations using scientific notation 92
Calculations with gravitational potential 760
Calculations with orbits 760
Calculators 389
Can you use energy conservation 630
Centrifugal force 714
Centripetal force 714
Choosing component directions 469
Circular motion and SHM 838
Comparing equations 838
Component vectors 389
Constant acceleration 236
Constant velocity 236, 514
Converting units of area and volume 92
Cosine graph 796
Difference in height 601
Direction of velocity and acceleration vectors 192
Dividing powers of 10 by each other 92
Do an experiment 148
Does it SUCK? 54
Doing work 557

Draw a graph 148
Elastic collision 601
Equation of a graph 281
Equation of a sine or cosine graph 796
Equations of motion 334
Experiment -> graph -> equation 236
Falling object 236
First what, then how 192
Free body diagram 469
Freefall 714
Frequency and period 662
Geostationary orbit 760
Gravitational field 760
Gravitational field lines 760
Gravitational potential 760
GUT check 281
Hooke's Law 838
How many objects? 514
Inelastic collision 601
Inverse square law 760
Is direction important? 192
Lifting an object 557
Linear and angular 662
Mass on a spring 838
Math with vectors 192
Measuring angles 192
Momentum conservation 436
Momentum vs kinetic energy 601
Multiplying powers of 10 by each other 92
Net force 469
New definitions for sine and cosine 796
Newton's 1st Law 436
Newton's 2nd Law 469
Newton's 3rd Law 436
Newton's 3rd Law pairs of forces 469
Object on a slope 469
Parentheses 334
Power notation 92
Proportion 436
Pythagoras' Theorem 389
Radians 662
Rates and slopes 148

Rearrange your equation 148
Right-angled triangle facts 389
Rope and pulley 630
Scientific notation 92
SHM graphs 838
Simple harmonic motion 838
Simple pendulum 838
Sine, cosine and tangent 389
Sine graph 796
Slope of a graph 236
Solving centripetal force problems 714
Solving problems that involve a slope 714
Special points 16, 334
Spot the difference 557, 630
Spot the triangle 389
Start with a sketch 192
Stopping an object 601
Substitution 281
Symmetry 334
The normal force 514
The slope of a graph 148
Think about errors 148
Vary one thing at a time 436
Vectors: positive direction 334
Volumes and areas 714
What's it LIKE? 16
What's pushing me? 714
Which equation of motion should I use 334
Working out an equation or graph 796
Working with forces and equations of motion 514
Work out an equation 148
You already know more than you think you do 16
Zero net torque 557
ω is your FRIEND! 838
Plant Rocker example 798-838
connecting spring constant with the frequency of oscillations 803-804
displacement from equilibrium 801
frequency change 822
mass on a spring 805-806
pendulum 831-833
vertical spring 824-826
point on a curved line 218-219
Pool Puzzle
Powers of 1077
Solution 78
Radians 649-650
Solution 650
potential energy 566, 567-570
changes 744
defined 556
elastic 575
force-displacement graph 743
gravitational 542-543, 565, 575
height difference 568
maximum gravitational 745
Potential Energy Exposed 746
power
button, calculator 61
defined 600
Joules 541
notation 61, 92
powers of $1064,78,92$
calculations 81
precision 113
predictions 128-129
proportion 430-433, 434
protractor 168, 170, 348
pulleys (see ropes and pulleys)
Pythagoras' Theorem 343-344, 347, 388

Q

qualitative 121
quantitative 121
Question Clinic
Angular quantities 660
Ballistic pendulum 599
Banked curve 711
Centripetal force 692
Converting units of area or volume 87

Design an experiment 194-199
Did you do what they asked you 146
Energy transfer 585
Equation you've never seen before 855
Free body diagram 466
Friction 499
Gravitational force $=$ centripetal force 758
How does this depend on that 836
Missing steps 387
Projectile 376-377
Proportion 434
Show that 584
Sketch a graph or Match a graph 331
Substitution 275
Symmetry and Special points 332
Thing on a slope 467
This equation is like that 813
Two equations, two unknowns 533
Units or Dimensional analysis 276
Vertical circle 712
Vertical spring 835
Wheat from the chaff 166

R

radians 646-648, 661, 771
angles in 648
defined 661
per second 651
units 659
working with 648
radius 633-634, 661, 724
centripetal acceleration 680
defined 661
Earth 737
right-angled triangle 775
versus surface area 722
random errors $106,108,113$
reducing 113
graphs 116
range, calculating 430-433
maximum 395-398

Ready Bake Equation
mass on a spring 809
pendulum 830
surface area of a sphere 720
volume of a sphere 851-852
Ready Bake Facts
gravitational force between two masses 737
mass of the Earth 737
radius of the Earth 737
speed of light 765
recoil velocity $409,424,427$
relative velocity, reversing 593
restoring force 844
results
graphing 114
precise without being accurate 113
revolutions 633-634
converting from linear distance 639-640
fraction of 649
right-angle 168
right-angled triangles 340, 346
adding interior angles 350
displacement vector 774-778
inside circle 775
solving problems 364
ropes and pulleys 604-630
direction of rope movement 611
energy conservation 620-626, 626
pulley, defined 629
slope and friction 619-623
rotational equilibrium 528, 530, 534
rotations 168
rounding answers 39
scientific notation 65
significant digits and 42
rounding converted errors 44

N

scalars 157,163
defined 191
speed 174
scale drawing 342
scales 453
compressing spring 440
producing measurement 439-442
stretching spring 440
support force 450
scatter 110
scientific notation 79-80, 91
and small numbers 68-70
calculations 81, 92
with large and small numbers 76
cubic meters 71
defined 91
estimating 70
index 70
large numbers 63-66
powers of 1064
rounding answers 65
significant digits 63
square meters 71
versus normal number 88-89
seesaw 520
shell, treating earth as 845-850
significant digits $36-41,50-51,54$
right number of 51
rounding 39
rounding answers and 42
scientific notation 63
versus decimal places 40-41
SimFootball example 472-514
calculating normal force 489
coefficient of force 497
component vectors 480-483
free body diagram 491
friction 484-492

SimFootball example (continued)
impulse 500-505
kicking football 473-474, 500-505
kinetic friction 487
momentum conservation 475-476
Newton's 1st Law 484
Newton's 3rd Law pair of forces 476-477
passing 473-474
players slipping 509-511
playing on moon 506-510
static friction 487
tackling 473-474, 481-482
tire drag 473-474, 493-497
triangle with no right angles 479
similar triangles 432,462,536
angles 352-355
classifying 353-355
ratios 354
trigonomic functions (see sine; cosine; tangent)
simple harmonic motion 806, 807, 842-845, 853-860
defined 837
frequency of SHM 814
pendulum 830
SimPool example 586-599
sine 354
graphs 796
new definition 779-781
relationship with cosine 785
SOH CAH TOA mnemonic 357
Sine Exposed 358, 787
sine wave 781
sinusoids 805-806, 809
SI prefixes 74
SI units 25, 26
skateboarding example 604-630
sketching out problems
castle defense system example 345-346
graphs (see graphs)
scale drawings 342
slope 120,122
'something'-time graph 225
calculating 121
defined 147
displacement-time graph 222-224, 295, 790-792
equations 122
graph 236
instantaneous velocity 213
negative 292
object moving down 563
positive 292
straight line 218
straight line graph 122
tangent 218
undulating 563, 566
uniform 560, 563, 566
velocity-time graph 226, 231, 291-294
zero 138
slope-calculating tips 122
Slope Up Close 292
small numbers and scientific notation 68-70
smooth line 217
SOH CAH TOA mnemonic 357
'something'-time graph 225
space station example 664-693, 726-760
calculating force on spaceship at any distance from Earth 741
centripetal force 674
disappearing 678
what affects size of 679
constant acceleration 728
contact force 668-673
escape velocity 726, 747-750
floor space 684-689
freefall 665-666
geostationary orbit 751
gravitational attraction 665
gravitational field lines 731
gravitational field strength 731-732
gravitational force 729
inverse square law 735
light intensity 730-731
rotating space station 678
special points 841
speed $101,111,190$
angular (see angular speed)
average 140
defined 147
equations 122
of light 765
speedometer 179
spheres 719
radius 724
versus surface area 722
surface area 720
treating Earth as 845
volume 851-852
versus surface area 722
spread $106,110,112,113$
springs 799-826
connecting spring constant with the frequency of oscillations 803-804
defined 837
displacement from equilibrium 801
elastic potential energy 816,820
energy conservation 816
force - displacement graph 818
mass on a spring 805-806
equation 809
total energy 819
stretching or compressing 800
vertical 824-826
square meters 71
static equilibrium 528, 530
static friction 487
steel ball-bearing 198
stopping an object 571-574
distance required 582
straight line 115
graph 122
slope of 218
substitutions 256-263, 308
defined 280
SUCK (mnemonic) 47, 53, 131-132
support force 449-453, 609
acceleration 453
scales 450
sword in the stone example 516-558
symmetry $398,841,848$
defined 333
systematic errors 106, 113

T
tables 73, 109
headings 109
tangent 218-219, 354
SOH CAH TOA mnemonic 357
velocity vector 684
tape measure 198
temperature
difference 552
internal energy 550
tension, defined 629
tension force 608-615, 704
terminology (see glossary)
testing equations 251-252
time 25, 26, 101, 108
defined 147
displacement - time graph 248-249
total 140
velocity - time graph 241-242, 248-250
versus distance 122
tire drag 473-474, 493-497
torque and work 515-558
direction of torque vector 529
efficiency 553
energy conservation 544-551
height difference 545
torque and work (continued)
energy transfer 542-543
temperature difference 552
force to displace object 538-541
force versus torque 526
friction 549-551
fulcrum, positioning 521-522
gravitational potential energy 542-543
gravity 549-551
internal energy
friction 551
temperature 550
Joules 541
lever 519-520
perpendicular component of a force 527
power output 541
rotational equilibrium $528,530,534$
seesaw 520
similar triangles 536
static equilibrium 528, 530
torque, defined 556
work, defined 556
zero net torque $525,528,530$
total momentum 418, 421
trajectories 367-390
velocity
horizontal components 371-379
vertical components 371-379
velocity and acceleration vectors 369
treasure hunt example 150-192
triangles
adding interior angles 349-350
classifying 353-355
equal angles 352
hypotenuse 775
multiples ways of solving problems 379-381
Pythagoras' Theorem 343-344
ratios 354
right-angled 340, 346-347
adding interior angles 350
displacement vector 774-778
inside circle 775
solving problems 364
similar (see similar triangles)
standard 386
trigonometric functions (see sine; cosine; tangent) velocity vector 793
with no right angles 479
Triangle Tip, sketch extreme angles 562, 624
trigonometric functions (see sine; cosine; tangent)
trigonometry, defined 388
Try it!
finding balance point of ruler 523-524
horizontal and vertical circles 703-704
throw ball straight up in the air 371-372
U
$\mathrm{U}=0$ at infinity 745
uncertainty 43
undulating slope 563,566
uniform slope 560, 563, 566
units 22, 53, 54, 109, 111, 198
acceleration 227-228
changing during problem 34
checking equations using 265-273
circular motion 644-648
conversion factors 29
converting 130-131
defined 53
radians 659
shorthand 175
(see also SI units)
V
variables 99
experimental setup 411
vectorizing equation 211
vectors 157, 163, 187
adding $159,162-163,418$
adding arrows nose-to-tail 157-158
defined 191
direction 288-289
displacement 769-774
right-angled triangles 774-778
x-component 783-784
velocity 174
versus scalars 188
velocity $174-179,187,210-211,227-228,841$
acceleration 180-182
angular velocity (see angular velocity)
average (see average velocity)
calculating using energy conservation and height difference 569
calculating with momentum conservation 429
centripetal force 684
constant (see constant velocity)
defined 191
duck-shooting competition example 789-793
equation 244, 246
freefall 666
graphing 293-294
instantaneous 213, 233
kinetic energy 567, 570
large objects 402
launch 321-324
launching object straight up 297
opposite direction of 288-289
recoil 409
related to force and mass 411-417
relative, reversing 593
trajectories 369
horizontal components 371-379
vertical components 371-379
vector 684
versus displacement 212, 217
velocity-time graph 230-231, 241-242, 248-250, 297, 790-792
slope 226, 231, 291-294
volume 71, 72, 82
defined 91
proportional to mass 852
sphere 851-852

W

weight 438, 442-443, 455
acceleration 447
defined 468
gravitational field 442
mass 442
vector components 462
zero perpendicular acceleration 461
WeightBotchers example 438-470
weightlessness 668
work (see torque and work)

Z

zero net force 528
zero net torque $525,528,530$
zero perpendicular acceleration 461
Zeros Exposed 52
zero slope 138

[^0]: "I Head First HTML with CSS \& XHTML-it teaches you everything you need to learn in a 'fun coated' format."

[^1]: Download at WoweBook.Com

[^2]: c. Do you think you can do this problem straight off, or do you need some extra information?

[^3]: * Well, everything about a right-angled triangle at least!

