Solutions to PS 3 Physics 201

. 6%(1;23/) = 2(2) = 22 That is, 8(;2@ = %% Therefore, F can be written in the form

of F= —VU(z,y) with some function U(z,y), which means that F is conservative.

or

From —%Y = 22y, U = [ —a?y do = —12°y+C(y), and then from —%—g = %S—C/(y) =

‘%3, we get C(y)=const. So finally, U(z,y) = —%a:‘gy—kconst.

Using this potential,

(2,3) (2,3)
/ F-dr:/ —VU(z,y)-dr =-U(2,3) +U(0,0) = 8. (1)
(0,0) (0,0)
1.6 x 103J
f:)—v — 1.6 x 102 Coulomb 2)
6.24 x 10'® electrons
= 1.6 x 10* Coulomb
6 x 10° Coulomb x T Coulomb (3)
= 1.0 x 10" electrons. (4)

. The potentials at (1,1) and (2,2) are given by

V(1) = euo) 1 (=30) (5)
’ dmeg/124+12m 4760 /0.82 +0.52 m’
1 (2 uC) 1 (—3uC)
V(2,2) = + . 6
( ) Ameg /22 +22m  4meg/1.824+1.52 m ( )
Therefore,
(Work needed) (7)
=V(2,2) x 2 uC —V(1,1) x 2 uC (8)

1

_ 9

4 x 314 x 885 x 1012 C2J-1 m—! (9)
4x10712C%2 6 x 10712 (2 4x1072 C?2 6x 10712 (2

(( 283m = 234m )= 14lm  094m ) (10)

=216x 1072 ] (11)
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4. The potential created by a dipole is given by

p cos@  p rcost p x

Vird)=V = = = . 12
(r0) (z,y) Ameg 12 drey 13 dmeq [22 + y2]3/2 (12)
First, in cartesian coordinate,
oV 0V
E=-VV=-i—— 13
i ax = ay (13)
A7eg [x2 + y?)3 . dmey 2 [12 + y2]5/2
i 2 3
P @y L y (15)
dreq (22 + y?]5/? dreq (22 + y?]5/2
In polar coordinate, using the fact that V = e, = ar + et 80, we get
0 p cosf 10, p cosb
=—-VV = —e, 16
© 87“(47T€0 r2 )~ e 7’80<47r60 r2 (16)
p 2cosf p sinf
== r ) 17
dmeg 13 e+ dmeq 13 ©0 (17)

which can be easily shown to be the same as the result in cartesian coordinate, noting

that e, =1 (7) +J (%) and eg = —i (}) +j (F).



5. V=0 surface is determined by

=0 18

Ve—a)?+y?+22 22 +y?+ 22 (18)
2 2
q 4q

& = 19

(I’ a)2+y2+z2 $2+y2+22 ( )

s 2y + 2 =4{(x —a)* +y* + 2} (20)

2
s (z-— 3a)2+y2+z2 = (EOL)2 (21)

This gives the surface of a sphere of radius 22, with the center at (3%,0,0) (FIG. 1).
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FIG. 1: V=0 surface.

V=const. surface appears if there is a grounded metal surface in the system. The

result of this problem can be used to obtain the potential created by a point charge

located inside or outside a metallic shell. This is a special case of the general result

that when charge () is put at a distance r from the center of a sphere of radius R,

the image equals —(RQ/r) and is located R?/r from the center towards the external

charge. (In our example R = 2a/3 and r = 4a/3.) You will be guided towards a proof

of this result in PS4.



6. The uniform charge density per area is p = - R2

The potential is calculated as the sum

of the potential created by the charge located at tiny part of the disc, and therefore,

v / 1 pdS
disc 47TEO V r2 -+ 22
/ rdr / do
dreg r2 + 22

—s V2 4+ 22

260 7rR2
27reoR2 [VR2 + 22 — V22
— VR - ]
In the limit of |z] — oo,
Q R Q

= — s
2meoR? /R + |22 + |2 Arreg|z|

which coincides with the potential created by a point charge () at the origin.

Also, in the limit of |z| — 0,

27re Dy [—|z| + VR? + |2|?]

Q  Ql
2megR 2megR?

[l

2R

+ . ]

(22)
(23)
(24)
(25)

(26)

(27)

(28)

(29)

Next, the electric field in the z direction at (0,0, z) can be calculated by differentiating

potential with z. That is, in the region of z ~ 0, by differentiating Eq. (29), we get

ov
E,=——
0z
Qo
2regR?2 0z
__Q =
- 2meoR? 2|
In other words, in the limit of z — +0,
Q
lim F, =+
ko 2megR2’

(30)
(31)

(32)

(33)

which coincides with the electric field created by infinitely large sheet with charge

Q

density per area p = —.



If V is wrongly given by %[\/ R?+ 22 — 2| = 27301% - %?ﬁ, this leads to
ov Q
lim B, = -2 = <% 34
P 0z  2megR? (34)

which is wrong because this gives the electric field in the same direction on both sides

of the disc.

And finally, V' calculated above is valid only on the z-axis. Therefore, it cannot be
used to calculate the electric field in x and y direction, which requires to use the
potential at the point off the axis. To calculate F, and E, on the z-axis from V/, first
we have to calculate V for point (x,y, z) that is not on the axis and then calculate the

gradient of V.

7. From the condition given in the problem, we get

120V = 5= (V12 + R? — 1)

(35)
100V = 525 (V22 + R? - 2)
Elliminating Q),
120 V1I+R?2-1 (36)

100 Virime_9

and finally we get R = 4v/210/11 = 5.27 m. Putting this into the previous equation,

we get
Q=120 V x 2regR?/(VR2 +1 - 1)) (37)
5.272
=120 J/C x 2 x3.14 x 8.85 x 10712 C?J! x 38
/ VB2 +1 -1 (38)
=4.25x107% C. (39)

8. In the same way as Problem 3 of PS2, using Gauss’s law and the symmetry of the

system, we get

/ E . dS — 42 [, — Denclosed. (40)

€0

For r < R, this gives us

r3
Er _ Qenclosed o Qﬁ _ Qr (41>

4megr? dregr?  AmegR3




For » > R, we have

Q

Ameqr?’

E, = (42)

In both cases, Fy = E, = 0. To calculate the potential at some point, we have to
integrate the work needed to convey test charge from infinite to that point. That is,

the potential is given by

V(r)= /r —E - dr (43)

Therefore, for » > R, we have
1l e. Q
= = ) 44
Vir) /oo 4e r2 ~ dreor (44)
For r < R,
e, 1 Q
= — rdr 4
Vir) /OO drreq 12 +/ 4eq R3 (4)

1 1R
QL 1 Ee
deg R R3 2

I (46)

. First we have to calculate the work needed to add a shell of thickness dr on a sphere
of radius r. Using the result of the previous problem for » > R and replacing ) with

Q% and R with r, we get

dW = (charge of the shell) x (potential at r) (47)
Q , o, QU/R)P1
- Ay (ALY 2 4
(§7TR3 mrdr)( 47eg 7“> (48)
3Q° 4
- K Ay 4
o Rﬁr dr (49)

Integrating this with respect to r from 0 to R, we get

R 3@2 4
W= / 47reoR6 (50)
3Q* R°
— i 1
dmeg RS 5 (51)
2
0 (52)

- 20meo R



Meanwhile, the volume integral of electric field energy is given by

R 00
/dV %OE2 _9 (i)Z(L)Zélmjdr —i—%o/ ( ¢ )2147rr2d7’ (53)

2 J, ‘4mey’ “R3 r Amey’ Tt
= 8220[ OR %dr + /ROO %dr] (54)
2
- teal5R T H 55)
3 2
B 202607 (56)

which is the same as the previous result.

. Applying Gauss’s law, and using the symmetry of the system, we have (PS2, Problem
4)

0(r<a)
E(r) =4 2 e, (a<r<b) (57)

2meQr

0 (r>b)
The potential can be calculated from this by the relation V(r) = [. —E - dr.
For r > b, V(r > b) = 0.

For a <r <,

Vi(r) = / “E-dr (58)
" A
= — d
/b 2megr " (59)
A r
— 5o log(}) (60)
A b
= log(— 61
ome; 108(2); (61)
and finally for r < a,
b
Vr<a)= log(—). (62)




11. The potential difference is given by

Q1 Q2
Vi—V, = —
! 2 dmegry  4dmegrs
B 30 x 1072 C
4 x3.14%x8.85x 10-12 C2J-1 x 0.10 m

—20%x 107° C

4 x3.14x885x 10712 C2J-! x 0.20 m

=2.70 x 10 — (=0.90 x 10°) [V]
= 3.60 x 10% [V]

(64)
(65)
(66)

Next, suppose charge q moves from the sphere 1 to the other when they are connected

by a conducting wire. In the end, the potential difference between the two sphere

should be 0. This gives us the following condition:

Q1—¢q _ Q2+q
47T€0R1 47T6[)R2

& Ry(Q1— q) = Ri(Q2 + q)

By solving for ¢, we get

. RyQ1 — R1(Q2

R+ Ry

~0.20 m x 30 nC — 0.10 m x (—20 nC)
N 0.10 m +0.20 m

= 26.7 nC

The resulting potential is given by

1
final __ y final __ _
‘/1 - ‘/2 47T€0R1 (Ql q)
I Q1+ Qo

- 471'60 R1 +R2

10 nC

T Ax314x885x10-2 C2J! x 0.30 m

=3.00 x 10> V
And the charges in the spheres are

QM = Q, —¢=13.3nC,

(67)

(68)

(76)



and
fnal — Q, + ¢ = 6.7 nC, (77)

respectively.

12. Suppose charge +Q and charge -Q are charged on the inner cylinder and on the outer
cylinder respectively. Assuming the cylinder is infinitely long, we can use the result of
problem 10 by replacing A with @)/L. Therefore, the potential difference V' between
the two cylinder is given by

QUL

2meg

log(b/a). (78)

From the relation Q) = CV,

1

C=Q/V =2megL— (79)
IOg 2
(80)
When b —a =d < a,

C = QWGOLW (81)
2meg L L (82)

=2megL————

" log(1 + 4)

2mal

= € ﬂ-da y (83)

which coincides with the capacitance of a parallel plate capacitor with area 2malL.



