Solutions to PS 7 Physics 201

1. The impedance of the circuit is given by
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Noting the relation between the amplitudes, |I| = |V|/|Z], we have
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2. From the relation 1/7,, = > 1/7Z;, we get
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and therefore,
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3. The impedance of the circuit element shown in the figure satisfies the relation
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Noting that Im[Z] =0 ( Z is real.) < Im[1/Z] =0, we have
Im[Z] =0 & (R* 4+ w’L*)wC — wL =0 (17)
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Of course, 4/ La—ng is real only if L > C'R?. Otherwise, the impedance is real only for
w = 0 (Note that Z = oo for w = 0).

4. As seen in problem 1, the impedance is given by

1
Z(w) =R+ E + iwlL (20)
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Clearly, Ry =100 §2 gives the minimum impedance, and Ry =200 2 gives the maximum
impedance. Next, we have to consider the imaginary part of the impedance. For

w = 2000, we get
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and
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Therefore, (Ry, Cy, L) gives the minimum impedance |Zy;,| = v/1002 + 12 &~ 100 €2,
and (Rz, C1, L1) gives the maximum impedance | Z.x| = v/200% 4 4982 =~ 537 ().

. The impedance Z, at w = 500 is given by
1

Zy(w = 500) =15 = (15 — 10007) © ~ 1000.1 e~ 5%
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and the total impedance is
Ziot(w = 500) = (25 — 10007) Q 2 1000.3 e~ 5% Q). (27)

Using these, we can calculate the power loss across Z,. However, we have to note
that Py, = LV, = Re[fg]Re[Vg] =+ Re[ig‘?g], where A is the imaginary expression of
A. (Operations such as derivative or integration commute with an operation of taking
Rel], that is, the order of operations does not matter. Actually, this fact makes use of
complex number convenient for this kind of problems. However, multiplication does
not commute with Re[]. Also note that complex numbers are ”imaginary” tool to
make calculation easier and that physical quantities we can observe in experiments

are always real.) Therefore,
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= 0.450 {cos(1000 + 1.534) + cos 1.556} [W] (32)
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Also from this, we can easily calculate

(Time average of power loss) = 0.450 cos 1.556 = 6.66 mW. (34)



6. The electric field between the plates is

Bry=¢ ¢ ¢ (35)

where d = 2 cm is the separation between the plates and a = 4 cm is a radius of the
plates. Noting that the capacitance has rotation symmetry about the central axis, we

have from Maxwell equation,
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where dzgt) = (—2007 x 200 sin 2007¢)V /s, whose amplitude is 40000 V/s. B reaches

its maximum at r = a. With actual numbers plugged in,
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