Solutions to PS 6 Physics 401a

1. Let B point along the z axis. Then by circuar symmetry, we have
B(r,t) = B(r,t)e. (1)

Using Faraday’s Law, we can find the electric field at radius r to be

%E(r,t) ~dl = —%B(r, t)-dA (2)
2rrEy(r,t) = _dit/o ' /07’ B(r,t)rdrdf (3)

Since the integral on the right hand side is just the integral of the magnetic field over
the while circle of radius r, we can replace it by the average value B(t) of the field

times the area of the circle. Thus

| =
|

2rEy(r,t) = _dt( (t)mr?) (4)
Ey(r,t) = _gdi_it) (5)
E(r,t) = —gdi—f)% (6)

‘fl_lz —F = —q(E(r,t) +v x B(r 1)) (7)
_%d(dBt(t) es+q (v xe,)B(rt) (8)

To get the tangential component pr of the momentum, we dot both sides of the Eq.

(8) by the unit vector ey, which yields

dpr _ qrd(B(1)
dt 2 dt

+qeq - (v x ;) B(r, 1)) 9)

Since we are looking for solutions describing circular orbits, we must have that v = vey,
and thus the second term in the above equation vanishes. Thus,
dpr  qr dB(t)
d 2 dt

pr(t) = —TB(1) (1)

(10)



and thus the magnitude of the tangential momentum is given by %B(t).

To find the available radial force, we now dot both sides of Eq. (8) by the unit vector

e,. This gives
g dB(t)

b= e et (vxe:) e B(r1) (12)
= qv- (e, x &) B(r,t) (13)
— —qv - eyB(r, 1) (14)
= —quBy (15)

Thus the available radial force is quB,y pointing towards the center of the circle.

-—
p+dp

We now want to derive an expression for the rate of change of the radial momentum.
Examining the figures above, we see that

Opr
pr

op, = prdf (17)

sin 00 ~ 00 =

(16)

but 06 is the angle traversed by the particle in some infinitesimally small time interval
0t, which by definition is equal to
00 = wot (18)



Thus, we have that

Opr = prwot
opy

St = wpr
dp,

dt = wpr

Combining this with our expressions for pr and F,., we find

wpr = quBo

w%é(t) = quBy

(2) 50w
B(t) = 2B,

(22)
(23)
(24)
(25)

(26)

as expected. Note that nowhere in this argument did we need to use the explicit form

for the relativistically correct momentum.

. Let a current I flow through the larger loop. Since R; < Ry, we can assume that the

field within the smaller loop is constant, and equal to its value at the center. By the

Biot-Savart law, we can compute its magnitude as

o tol [d
A ) r?
ol 2T Rodf
), '
_ ol
2R,

Thus, the flux through the inner loop is given by

2
®— pA - MolThy
2R,
And therefore the mutual inductance is,
®  pomR}

1 2R

(31)



3. Let y be the coordinate of the lower end of the loop, and define y = 0 to be the point
where it initially enters the magnetic field. Then the magnitude of the EMF through
the loop is given by

€ = ]fl—‘f (32)
d

= 2 (Buy) (33)

= Bwv (34)

And thus the current through the loop is given by
Bwv
I =
R

By Lenz’s law, we know that this current must be flowing counterclockwise through

(35)

the loop to oppose the increasing flux into the page. Thus, the magnetic force on the

loop is given by

F, = —IwBe, (36)
B2 2
=— Rw ve, (37)

where we have defined down to be the positive y direction. At terminal velocity, we
know that the acceleration on the loop is zero, and thus the magnetic force exactly

balances the gravitational force. Thus

B2 2
Mg — - vp =0 (38)
MgR
Ur = B2w2 (39)

4. With B(t) = Byt, we have that the magnitude of the EMF through the loop is given
by

dd
= |% (40
d 2
= Z(nAByt) (41)
= 1A’ By (42)

The maximum charge on the capacitor is given when the voltage across the capacitor

exactly balances the EMF, and thus

‘/cap - |g| - 7TA2BO (43)



and finally
Q = CV,p = TA’B,C (44)

The orentiation of the charge can be seen in the figure below, via Lenz’s law.

FIG. 1: The X indicates the direction of increasing magnetic flux, and thus by Lenz’s law current
must flow counterclockwise through the loop, depositing positive charge on the bottom end of the

capacitor.

5. (a) Taking the +z direction to be away from the battery, we have that the net EMF
in the loop is given by

e=v-2 (45)
=V - %(wa) (46)
=V — Buwv (47)
(b) The magnetic force is
F =IwBe, = %wEez (48)

Thus,
dv  VwB — B*w*v
m— =
dt R




To integrate this equation, we let

Then we have

dv

—=a— v

dt

/aivﬂv_/dt

Since v(0) = 0, we must have

—%ln(a—ﬁv) =t+D
a—fv=Ce "
v(t) = % (a — C’e_ﬂt)
C=a«a

and therefore

6. Looking at the loop composed of R; and Rs, we have by Kirchoff’s law that

V =1+ )R + 1Ry

V Ry
I, = -1
Next, Looking at the loop containing the inductor and R, we find
dl,
0=—-L—+ Ryl
o + Iiglo
dhy VR, 7 Ry Ry
dt  Ri+Ry ' \Ri+Rs
I
ah _ VRy IR
dt  Ri+ Ry
Asymptotically, we see that
Il (t — OO) = —

)

(50)

(51)

(58)

(59)



Substituting into the equation

We see that

Vv
Li(t) = — 4+ aft
\(t) = 5+ alt)
da
L— = —Ra(t
pm Ra(t)
do R
— = ——dt
o L
oz(t):Ce_RTt

Since I;(0) = 0, we must have that

and thus

(a)

(b) The total frequency dependent complex impedance is given by

(c)

1
wo =1/ ——
0 LC
1
C=—
Wil
B 1
(21 x 3000H 2)* (10mH)
— 281nF

Z(@:RH(@-%)

1 2 itan—1 oo
:\/R2+(WL——C)6t ( i
w

Plugging in the numbers for R,L,C, and w, we find

Z(2m x 5000H 2) = (225Q)e' 1"

We can write the voltage signal in complex form as

V(1) = R [200¢'00007]

wC

)

(66)

(70)

(71)



where # || denotes the real part. Then, by Ohm’s Law we have

10000mit
I(t) =% {%} (80)
= 0.89 cos (100007t — 1.11) A (81)
(d) The average power is given by
(P) =(IV) (82)
= 178 (cos(100007t) cos(100007t — 1.11)) W (83)
= %cos(—l.ll)w (84)
= 39.6W (85)
(e) The maximum value of the current is given by
Ier = 0.89A (86)
Thus, by Ohm’s law, the maximum voltage across the resistor is
VE =89V (87)
the maximum voltage across the inductor is
VE = (100007)(0.01)(0.89) = 897V (88)
and finally the maximum voltage across the capacitor is given by
¢ = 089 = 100.7V (89)

v
maz = (100007) (281 x 10-9)

These numbers add up to greater than 200V since the maximum voltage drop

across each element do not occur at the same time.

8. At resonance, Z = R, and so the current flowing through the circuit is given by

1) = %) — 1.1 cos(100mt) A (90)

We can also solve for L from the resonance condition to find

1
1007 = ([~ 01
"=\ LopF) (91)

L=051H (92)



Using Ohm’s law in complex form, we thus find that the voltage Vp r across the resistor-

inductor segment is given by
Vir(t) = R [1.1(100 + i51m)e' ™™ V (93)
The maximum value is then given by the amplitude of Vg, which we can see is

VIE® = 1.14/100% 4 (51m)2V (94)

= 207.75V (95)

9. Since we define the charge on the capacitor as

Q= / I(t)dt (96)

We have that the voltage drop across the capacitor is opposite in sign to the direction

of the current. Thus, the Kirchoff loop equation gives us

1 dl
—— | It dt— L— — IR =
& [ a1~ 1R =0 (97)
Substituting in
I(t) = Tpe (98)
we find
0= L +al — R (99)
ol @
1
=ao’L—aR+ — 100
«a aR + o (100)
4L
R R =

W e

If R is small enough, we get two complex solutions a; and a_ which are complex

conjugate pairs. The most general solution for I(t) is then
I(t)=Te "+ 1 e ! (103)

For this to be real, we must have



10.

where * denotes the complex conjugate operation. Defining

and letting

we have

where A and ¢ are determined by the initial values 71(0) and

A ; - A ; .
[(t) — Eefzzi)ef%tezwt + _eui)ef%tefzwt

= Ae 2’ cos (W't — )

dI(0)
dt

10

(105)

(106)

(107)

(108)

From the Current divider rule given in the problem, we have that the current flowing

through point A is given by

and similarly

Zr, + 21,

Iy =1,
A e e ¥ Ty + 21+ Zo

Zr, + Zc
Zp, +Zp, + 21+ Zc

]B = Itat

Thus, by Ohm’s law, V4 is given by

and similarly

Va=V —Zcly

Ve =V — Zg,Ip

Combining these, we find

VA - VB - ZR2[B - ZC[A
_ Zry (Zry + Zo) — Zo (Zry + Z1)
Zp, +Zp, + 21+ Zc
B R1R2—if—é+@—£

— wC C
Zp,+Zr, + 21+ Zo
RiR, — &

~ Zp, + Zpy + 21+ Zo

Thus, we see that when é = R Ro,

Vi—Vg =0

(109)

(110)

(111)

(112)

(113)

(114)
(115)

(116)

(117)

(118)



