Solutions to PS 13 Physics 201

1. By plugging in the assumed form to the equation, we get
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Dividing by F(t)y(x),
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The left hand side of this equation is a function of only z, while the right hand side is

a function of only ¢. The only possibility is that both of these are just constant. Then,
we can assume this constant is —(3% with some 3. (Here, (3 is generally a complex
number and adding a - sign gives the same result. But this convention will make the

calculation simpler by use of sin and cos.) This assumption leads to the following two

equations:
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d?F(t
dt2< ) = —ﬁzsz(t). (4)

The solution to the eq. (3) and (4) is given by

Y(z) = Acos Bz + Bsin iz, (5)
and

F(t) = C cos But + Dsin fut. (6)

However, we have to impose the boundary condition ¢ (0) = ¥(L) = 0. This leads
to A = 0 and 3L = 27m with some integer m. Then, by defining new coefficients
A’ = BC and B' = BD, we finally get
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7er$ (A’ cos szt + B'sin 7TZwt). (7)

Because the string is at rest at ¢ = 0, that is, d’(ﬁ((;’,o) = 0, we have B’ = 0. Also, from

the condition that ¢(x,0) = Asin Z”T":E, we get A' = A and m = n. Therefore,

Y(x,t) = sin

2m™n 2mnu

Y(z,t) = Asin —wcos— t. (8)




2. (i)The normalized momentum eigenstate is given by
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Thus, ¥, (z) satisfies Hi,(z) = Eiy,(z) with E = 22002 = F

mL?
(ii)Let’s define normalized wavefunction ¢(x,t) = C4(z,t). From normalization con-

dition, we get
L
1=|CF [ il 0) s (14
0

P / (O1tha (@) + 1205 (2 )s () + 120n(2)53(2) + 1605 (0)Pdz (15

= |C]*(9 + 16) = 25|C?, (16)

where the orthonomality of the states was used. We can simply take C=1/5. Finally

we have

B, 0) = Synla) + 5 (x) (17)

(Note that we have only to impose normalization condition at ¢ = 0, because the

conservation of probability holds from the time-dependent Schrédinger equation.)

Noting that time evolutions of 1y(z) and v (x) under the time-dependent Schrodinger

equation are given by
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and
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we get
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From this, we have
P(z,t) = [¢(x, 1) (22)
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3. (i)It is useful to define ”characteristic length scale” xy = \/%. Then, we have
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(Note that z/x is a dimensionless quantity.) Fig.1 is a plot of this function.
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(ii) From normalization condition, we have

/ o ()2 = |A[? / 2emmen/h gy
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Using the formula [ e o dp = 5=/ = with a = mw/h, we get
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and therefore,
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Fig.2 is a plot of this function.

(25)

(26)



(4/m ezx02)1/4 Y

FIG. 2:

(iii)

Using this, we find
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and thusHv, (z) = Eipy(z) with
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/ " (@) ()de = / " Yol (x)dz (38)

:[—8]/ xe  n dx, (39)
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but this integral is simply 0 because xe™ =  is an odd function of .

(v) Let’s define normalized wavefunction 1 (z,t) = C(z,t). Using the above result,

we have from normalization condition,
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We can simply take C' = 1/5. Then, we have ¢(z,0) = 2¢o(z) + 3¢1(z). (Note that

again we have only to impose normalization condition at ¢ = 0.)

Noting that time evolutions of ¢y(z) and v (x) under the time-dependent Schrodinger

equation are given by

Wole, £) = o(x)e 7 = go(a)e ! (45)
and
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we get
B, 0) = So(a)eH + Sun(a)e T (47)
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Therefore,
P(a,t) = [i(z,t)]? (49)
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P(zx,t) =



